|
--- |
|
license: mit |
|
base_model: numind/NuNER-v2.0 |
|
tags: |
|
- generated_from_trainer |
|
metrics: |
|
- precision |
|
- recall |
|
- f1 |
|
- accuracy |
|
model-index: |
|
- name: nuner-v2_fewnerd_fine_super |
|
results: [] |
|
--- |
|
|
|
<!-- This model card has been generated automatically according to the information the Trainer had access to. You |
|
should probably proofread and complete it, then remove this comment. --> |
|
|
|
# nuner-v2_fewnerd_fine_super |
|
|
|
This model is a fine-tuned version of [numind/NuNER-v2.0](https://huggingface.co/numind/NuNER-v2.0) on an unknown dataset. |
|
It achieves the following results on the evaluation set: |
|
- Loss: 0.2362 |
|
- Precision: 0.6810 |
|
- Recall: 0.7160 |
|
- F1: 0.6981 |
|
- Accuracy: 0.9313 |
|
|
|
## Model description |
|
|
|
More information needed |
|
|
|
## Intended uses & limitations |
|
|
|
More information needed |
|
|
|
## Training and evaluation data |
|
|
|
More information needed |
|
|
|
## Training procedure |
|
|
|
### Training hyperparameters |
|
|
|
The following hyperparameters were used during training: |
|
- learning_rate: 3e-05 |
|
- train_batch_size: 32 |
|
- eval_batch_size: 32 |
|
- seed: 42 |
|
- gradient_accumulation_steps: 2 |
|
- total_train_batch_size: 64 |
|
- optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08 |
|
- lr_scheduler_type: linear |
|
- lr_scheduler_warmup_ratio: 0.1 |
|
- num_epochs: 4 |
|
|
|
### Training results |
|
|
|
| Training Loss | Epoch | Step | Validation Loss | Precision | Recall | F1 | Accuracy | |
|
|:-------------:|:-----:|:----:|:---------------:|:---------:|:------:|:------:|:--------:| |
|
| 0.2602 | 1.0 | 2059 | 0.2486 | 0.6570 | 0.7031 | 0.6793 | 0.9270 | |
|
| 0.2199 | 2.0 | 4118 | 0.2369 | 0.6791 | 0.7043 | 0.6915 | 0.9302 | |
|
| 0.2052 | 3.0 | 6177 | 0.2349 | 0.6785 | 0.7143 | 0.6959 | 0.9312 | |
|
| 0.1835 | 4.0 | 8236 | 0.2362 | 0.6810 | 0.7160 | 0.6981 | 0.9313 | |
|
|
|
|
|
### Framework versions |
|
|
|
- Transformers 4.39.3 |
|
- Pytorch 2.2.0+cu121 |
|
- Datasets 2.18.0 |
|
- Tokenizers 0.15.2 |
|
|