guishe's picture
Model save
7db6239 verified
|
raw
history blame
1.91 kB
---
license: mit
base_model: numind/NuNER-v2.0
tags:
- generated_from_trainer
metrics:
- precision
- recall
- f1
- accuracy
model-index:
- name: nuner-v2_fewnerd_fine_super
results: []
---
<!-- This model card has been generated automatically according to the information the Trainer had access to. You
should probably proofread and complete it, then remove this comment. -->
# nuner-v2_fewnerd_fine_super
This model is a fine-tuned version of [numind/NuNER-v2.0](https://huggingface.co/numind/NuNER-v2.0) on an unknown dataset.
It achieves the following results on the evaluation set:
- Loss: 0.2362
- Precision: 0.6810
- Recall: 0.7160
- F1: 0.6981
- Accuracy: 0.9313
## Model description
More information needed
## Intended uses & limitations
More information needed
## Training and evaluation data
More information needed
## Training procedure
### Training hyperparameters
The following hyperparameters were used during training:
- learning_rate: 3e-05
- train_batch_size: 32
- eval_batch_size: 32
- seed: 42
- gradient_accumulation_steps: 2
- total_train_batch_size: 64
- optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08
- lr_scheduler_type: linear
- lr_scheduler_warmup_ratio: 0.1
- num_epochs: 4
### Training results
| Training Loss | Epoch | Step | Validation Loss | Precision | Recall | F1 | Accuracy |
|:-------------:|:-----:|:----:|:---------------:|:---------:|:------:|:------:|:--------:|
| 0.2602 | 1.0 | 2059 | 0.2486 | 0.6570 | 0.7031 | 0.6793 | 0.9270 |
| 0.2199 | 2.0 | 4118 | 0.2369 | 0.6791 | 0.7043 | 0.6915 | 0.9302 |
| 0.2052 | 3.0 | 6177 | 0.2349 | 0.6785 | 0.7143 | 0.6959 | 0.9312 |
| 0.1835 | 4.0 | 8236 | 0.2362 | 0.6810 | 0.7160 | 0.6981 | 0.9313 |
### Framework versions
- Transformers 4.39.3
- Pytorch 2.2.0+cu121
- Datasets 2.18.0
- Tokenizers 0.15.2