metadata
library_name: peft
tags:
- gpt-j
- gpt-j-6b
- code
- instruct
- instruct-code
- code-alpaca
- alpaca-instruct
- alpaca
- llama7b
- gpt2
datasets:
- ewof/code-alpaca-instruct-unfiltered
base_model: EleutherAI/gpt-j-6b
We finetuned GPT-J 6B on Code-Alpaca-Instruct Dataset (ewof/code-alpaca-instruct-unfiltered) for 5 epochs or ~ 25,000 steps using MonsterAPI no-code LLM finetuner.
This dataset is HuggingFaceH4/CodeAlpaca_20K unfiltered, removing 36 instances of blatant alignment.
The finetuning session got completed in 206 minutes and costed us only $8
for the entire finetuning run!
Hyperparameters & Run details:
- Model Path: EleutherAI/gpt-j-6b
- Dataset: ewof/code-alpaca-instruct-unfiltered
- Learning rate: 0.0003
- Number of epochs: 5
- Data split: Training: 90% / Validation: 10%
- Gradient accumulation steps: 1