hajili's picture
hajili/xlm-roberta-base-azsci-topics
ba6c6b8 verified
|
raw
history blame
1.94 kB
metadata
license: mit
base_model: FacebookAI/xlm-roberta-base
tags:
  - generated_from_trainer
metrics:
  - precision
  - recall
  - f1
  - accuracy
model-index:
  - name: xlm-roberta-base-azsci-topics
    results: []

xlm-roberta-base-azsci-topics

This model is a fine-tuned version of FacebookAI/xlm-roberta-base on an unknown dataset. It achieves the following results on the evaluation set:

  • Loss: 0.5075
  • Precision: 0.8624
  • Recall: 0.8707
  • F1: 0.8645
  • Accuracy: 0.8707

Model description

More information needed

Intended uses & limitations

More information needed

Training and evaluation data

More information needed

Training procedure

Training hyperparameters

The following hyperparameters were used during training:

  • learning_rate: 2e-05
  • train_batch_size: 16
  • eval_batch_size: 64
  • seed: 42
  • optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08
  • lr_scheduler_type: linear
  • num_epochs: 5

Training results

Training Loss Epoch Step Validation Loss Precision Recall F1 Accuracy
No log 1.0 288 0.8674 0.6762 0.7422 0.6848 0.7422
1.3706 2.0 576 0.6110 0.8177 0.8264 0.8104 0.8264
1.3706 3.0 864 0.5391 0.8407 0.8490 0.8415 0.8490
0.5184 4.0 1152 0.5059 0.8505 0.8559 0.8493 0.8559
0.5184 5.0 1440 0.5075 0.8624 0.8707 0.8645 0.8707

Framework versions

  • Transformers 4.38.2
  • Pytorch 2.1.0+cu121
  • Datasets 2.18.0
  • Tokenizers 0.15.2