ALMA (Advanced Language Model-based trAnslator) is an LLM-based translation model, which adopts a new translation model paradigm: it begins with fine-tuning on monolingual data and is further optimized using high-quality parallel data. This two-step fine-tuning process ensures strong translation performance. Please find more details in our paper.

@misc{xu2023paradigm,
      title={A Paradigm Shift in Machine Translation: Boosting Translation Performance of Large Language Models}, 
      author={Haoran Xu and Young Jin Kim and Amr Sharaf and Hany Hassan Awadalla},
      year={2023},
      eprint={2309.11674},
      archivePrefix={arXiv},
      primaryClass={cs.CL}
}

ALMA-R (NEW!) is released now! ALMA-R builds upon ALMA models, with further LoRA fine-tuning with our proposed Contrastive Preference Optimization (CPO) as opposed to the Supervised Fine-tuning used in ALMA. CPO fine-tuning requires our triplet preference data for preference learning. ALMA-R now can matches or even exceeds GPT-4 or WMT winners!

@misc{xu2024contrastive,
      title={Contrastive Preference Optimization: Pushing the Boundaries of LLM Performance in Machine Translation}, 
      author={Haoran Xu and Amr Sharaf and Yunmo Chen and Weiting Tan and Lingfeng Shen and Benjamin Van Durme and Kenton Murray and Young Jin Kim},
      year={2024},
      eprint={2401.08417},
      archivePrefix={arXiv},
      primaryClass={cs.CL}
}

We release six translation models presented in the paper:

  • ALMA-7B: Full-weight Fine-tune LLaMA-2-7B on 20B monolingual tokens and then Full-weight fine-tune on human-written parallel data
  • ALMA-7B-LoRA: Full-weight Fine-tune LLaMA-2-7B on 20B monolingual tokens and then LoRA fine-tune on human-written parallel data
  • ALMA-7B-R (NEW!): Further LoRA fine-tuning upon ALMA-7B-LoRA with contrastive preference optimization.
  • ALMA-13B: Full-weight Fine-tune LLaMA-2-7B on 12B monolingual tokens and then Full-weight fine-tune on human-written parallel data
  • ALMA-13B-LoRA (Our best system): Full-weight Fine-tune LLaMA-2-7B on 12B monolingual tokens and then LoRA fine-tune on human-written parallel data
  • ALMA-13B-R (NEW!): Further LoRA fine-tuning upon ALMA-13B-LoRA with contrastive preference optimization.

Model checkpoints are released at huggingface:

Note that ALMA-7B-Pretrain and ALMA-13B-Pretrain are NOT translation models. They only experience stage 1 monolingual fine-tuning (20B tokens for the 7B model and 12B tokens for the 13B model), and should be utilized in conjunction with their LoRA models.

Datasets used by ALMA and ALMA-R are also released at huggingface now (NEW!)

Datasets Train / Validation Test
Human-Written Parallel Data (ALMA) train and validation WMT'22
Triplet Preference Data train WMT'22 and WMT'23

A quick start to use system ALMA-13B-LoRA for translation. An example of translating "我爱机器翻译。" into English:

import torch
from peft import PeftModel
from transformers import AutoModelForCausalLM
from transformers import LlamaTokenizer

# Load base model and LoRA weights
model = AutoModelForCausalLM.from_pretrained("haoranxu/ALMA-13B-Pretrain", torch_dtype=torch.float16, device_map="auto")
model = PeftModel.from_pretrained(model, "haoranxu/ALMA-13B-Pretrain-LoRA")
tokenizer = LlamaTokenizer.from_pretrained("haoranxu/ALMA-13B-Pretrain", padding_side='left')

# Add the source setence into the prompt template
prompt="Translate this from Chinese to English:\nChinese: 我爱机器翻译。\nEnglish:"
input_ids = tokenizer(prompt, return_tensors="pt", padding=True, max_length=40, truncation=True).input_ids.cuda()

# Translation
with torch.no_grad():
    generated_ids = model.generate(input_ids=input_ids, num_beams=5, max_new_tokens=20, do_sample=True, temperature=0.6, top_p=0.9)
outputs = tokenizer.batch_decode(generated_ids, skip_special_tokens=True)
print(outputs)

Please find more details in our GitHub repository

Downloads last month
13,712
Inference Examples
This model does not have enough activity to be deployed to Inference API (serverless) yet. Increase its social visibility and check back later, or deploy to Inference Endpoints (dedicated) instead.

Model tree for haoranxu/ALMA-13B-Pretrain

Finetuned
(47)
this model
Adapters
1 model
Finetunes
1 model
Quantizations
6 models

Space using haoranxu/ALMA-13B-Pretrain 1

Collection including haoranxu/ALMA-13B-Pretrain