Update README.md
Browse files
README.md
CHANGED
@@ -3,9 +3,6 @@ license: mit
|
|
3 |
---
|
4 |
**ALMA** (**A**dvanced **L**anguage **M**odel-based tr**A**nslator) is an LLM-based translation model, which adopts a new translation model paradigm: it begins with fine-tuning on monolingual data and is further optimized using high-quality parallel data. This two-step fine-tuning process ensures strong translation performance.
|
5 |
Please find more details in our [paper](https://arxiv.org/abs/2309.11674).
|
6 |
-
|
7 |
-
**[ALMA-R](https://arxiv.org/abs/2401.08417) (NEW!) is released now!** ALMA-R builds upon ALMA models, with further LoRA fine-tuning with our proposed **Contrastive Preference Optimization (CPO)** as opposed to the Supervised Fine-tuning used in ALMA. CPO fine-tuning requires our [triplet preference data](https://huggingface.co/datasets/haoranxu/ALMA-R-Preference) for preference learning. ALMA-R now can matches or even exceeds GPT-4 or WMT winners!
|
8 |
-
|
9 |
```
|
10 |
@misc{xu2023paradigm,
|
11 |
title={A Paradigm Shift in Machine Translation: Boosting Translation Performance of Large Language Models},
|
@@ -16,6 +13,19 @@ Please find more details in our [paper](https://arxiv.org/abs/2309.11674).
|
|
16 |
primaryClass={cs.CL}
|
17 |
}
|
18 |
```
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
19 |
We release six translation models presented in the paper:
|
20 |
- **ALMA-7B**: Full-weight Fine-tune LLaMA-2-7B on 20B monolingual tokens and then **Full-weight** fine-tune on human-written parallel data
|
21 |
- **ALMA-7B-LoRA**: Full-weight Fine-tune LLaMA-2-7B on 20B monolingual tokens and then **LoRA** fine-tune on human-written parallel data
|
@@ -29,10 +39,10 @@ Model checkpoints are released at huggingface:
|
|
29 |
|:-------------:|:---------------:|:---------:|
|
30 |
| ALMA-7B | [haoranxu/ALMA-7B](https://huggingface.co/haoranxu/ALMA-7B) | - |
|
31 |
| ALMA-7B-LoRA | [haoranxu/ALMA-7B-Pretrain](https://huggingface.co/haoranxu/ALMA-7B-Pretrain) | [haoranxu/ALMA-7B-Pretrain-LoRA](https://huggingface.co/haoranxu/ALMA-7B-Pretrain-LoRA) |
|
32 |
-
| **ALMA-7B-R (NEW!)** | [haoranxu/ALMA-7B-
|
33 |
| ALMA-13B | [haoranxu/ALMA-13B](https://huggingface.co/haoranxu/ALMA-13B) | - |
|
34 |
| ALMA-13B-LoRA | [haoranxu/ALMA-13B-Pretrain](https://huggingface.co/haoranxu/ALMA-13B-Pretrain) | [haoranxu/ALMA-13B-Pretrain-LoRA](https://huggingface.co/haoranxu/ALMA-13B-Pretrain-LoRA) |
|
35 |
-
| **ALMA-13B-R (NEW!)** | [haoranxu/ALMA-13B-
|
36 |
|
37 |
**Note that `ALMA-7B-Pretrain` and `ALMA-13B-Pretrain` are NOT translation models. They only experience stage 1 monolingual fine-tuning (20B tokens for the 7B model and 12B tokens for the 13B model), and should be utilized in conjunction with their LoRA models.**
|
38 |
|
@@ -42,7 +52,7 @@ Datasets used by ALMA and ALMA-R are also released at huggingface now (NEW!)
|
|
42 |
| Human-Written Parallel Data (ALMA) | [train and validation](https://huggingface.co/datasets/haoranxu/ALMA-Human-Parallel) | [WMT'22](https://huggingface.co/datasets/haoranxu/WMT22-Test) |
|
43 |
| Triplet Preference Data | [train](https://huggingface.co/datasets/haoranxu/ALMA-R-Preference) | [WMT'22](https://huggingface.co/datasets/haoranxu/WMT22-Test) and [WMT'23](https://huggingface.co/datasets/haoranxu/WMT23-Test) |
|
44 |
|
45 |
-
A quick start to use
|
46 |
```
|
47 |
import torch
|
48 |
from peft import PeftModel
|
|
|
3 |
---
|
4 |
**ALMA** (**A**dvanced **L**anguage **M**odel-based tr**A**nslator) is an LLM-based translation model, which adopts a new translation model paradigm: it begins with fine-tuning on monolingual data and is further optimized using high-quality parallel data. This two-step fine-tuning process ensures strong translation performance.
|
5 |
Please find more details in our [paper](https://arxiv.org/abs/2309.11674).
|
|
|
|
|
|
|
6 |
```
|
7 |
@misc{xu2023paradigm,
|
8 |
title={A Paradigm Shift in Machine Translation: Boosting Translation Performance of Large Language Models},
|
|
|
13 |
primaryClass={cs.CL}
|
14 |
}
|
15 |
```
|
16 |
+
**[ALMA-R](https://arxiv.org/abs/2401.08417) (NEW!) is released now!** ALMA-R builds upon ALMA models, with further LoRA fine-tuning with our proposed **Contrastive Preference Optimization (CPO)** as opposed to the Supervised Fine-tuning used in ALMA. CPO fine-tuning requires our [triplet preference data](https://huggingface.co/datasets/haoranxu/ALMA-R-Preference) for preference learning. ALMA-R now can matches or even exceeds GPT-4 or WMT winners!
|
17 |
+
|
18 |
+
|
19 |
+
```
|
20 |
+
@misc{xu2024contrastive,
|
21 |
+
title={Contrastive Preference Optimization: Pushing the Boundaries of LLM Performance in Machine Translation},
|
22 |
+
author={Haoran Xu and Amr Sharaf and Yunmo Chen and Weiting Tan and Lingfeng Shen and Benjamin Van Durme and Kenton Murray and Young Jin Kim},
|
23 |
+
year={2024},
|
24 |
+
eprint={2401.08417},
|
25 |
+
archivePrefix={arXiv},
|
26 |
+
primaryClass={cs.CL}
|
27 |
+
}
|
28 |
+
```
|
29 |
We release six translation models presented in the paper:
|
30 |
- **ALMA-7B**: Full-weight Fine-tune LLaMA-2-7B on 20B monolingual tokens and then **Full-weight** fine-tune on human-written parallel data
|
31 |
- **ALMA-7B-LoRA**: Full-weight Fine-tune LLaMA-2-7B on 20B monolingual tokens and then **LoRA** fine-tune on human-written parallel data
|
|
|
39 |
|:-------------:|:---------------:|:---------:|
|
40 |
| ALMA-7B | [haoranxu/ALMA-7B](https://huggingface.co/haoranxu/ALMA-7B) | - |
|
41 |
| ALMA-7B-LoRA | [haoranxu/ALMA-7B-Pretrain](https://huggingface.co/haoranxu/ALMA-7B-Pretrain) | [haoranxu/ALMA-7B-Pretrain-LoRA](https://huggingface.co/haoranxu/ALMA-7B-Pretrain-LoRA) |
|
42 |
+
| **ALMA-7B-R (NEW!)** | [haoranxu/ALMA-7B-R (LoRA merged)](https://huggingface.co/haoranxu/ALMA-7B-R) | - |
|
43 |
| ALMA-13B | [haoranxu/ALMA-13B](https://huggingface.co/haoranxu/ALMA-13B) | - |
|
44 |
| ALMA-13B-LoRA | [haoranxu/ALMA-13B-Pretrain](https://huggingface.co/haoranxu/ALMA-13B-Pretrain) | [haoranxu/ALMA-13B-Pretrain-LoRA](https://huggingface.co/haoranxu/ALMA-13B-Pretrain-LoRA) |
|
45 |
+
| **ALMA-13B-R (NEW!)** | [haoranxu/ALMA-13B-R (LoRA merged)](https://huggingface.co/haoranxu/ALMA-13B-R) | - |
|
46 |
|
47 |
**Note that `ALMA-7B-Pretrain` and `ALMA-13B-Pretrain` are NOT translation models. They only experience stage 1 monolingual fine-tuning (20B tokens for the 7B model and 12B tokens for the 13B model), and should be utilized in conjunction with their LoRA models.**
|
48 |
|
|
|
52 |
| Human-Written Parallel Data (ALMA) | [train and validation](https://huggingface.co/datasets/haoranxu/ALMA-Human-Parallel) | [WMT'22](https://huggingface.co/datasets/haoranxu/WMT22-Test) |
|
53 |
| Triplet Preference Data | [train](https://huggingface.co/datasets/haoranxu/ALMA-R-Preference) | [WMT'22](https://huggingface.co/datasets/haoranxu/WMT22-Test) and [WMT'23](https://huggingface.co/datasets/haoranxu/WMT23-Test) |
|
54 |
|
55 |
+
A quick start to use system ALMA-13B-LoRA for translation. An example of translating "我爱机器翻译。" into English:
|
56 |
```
|
57 |
import torch
|
58 |
from peft import PeftModel
|