Edit model card

trim-lesson7-classification

This model is a fine-tuned version of facebook/wav2vec2-base on an unknown dataset. It achieves the following results on the evaluation set:

  • Loss: 0.1884
  • Accuracy: 0.9670
  • F1-score: 0.9671
  • Recall-score: 0.9670
  • Precision-score: 0.9679

Model description

More information needed

Intended uses & limitations

More information needed

Training and evaluation data

More information needed

Training procedure

Training hyperparameters

The following hyperparameters were used during training:

  • learning_rate: 5e-05
  • train_batch_size: 64
  • eval_batch_size: 64
  • seed: 42
  • optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08
  • lr_scheduler_type: linear
  • num_epochs: 25
  • mixed_precision_training: Native AMP

Training results

Training Loss Epoch Step Validation Loss Accuracy F1-score Recall-score Precision-score
3.8363 1.0 223 3.7557 0.1494 0.0778 0.1494 0.0756
2.7979 2.0 446 2.5827 0.6355 0.5759 0.6355 0.6166
1.6429 3.0 669 1.5768 0.9235 0.9229 0.9235 0.9280
1.659 4.0 892 0.8894 0.9440 0.9439 0.9440 0.9461
0.5305 5.0 1115 0.5156 0.9557 0.9557 0.9557 0.9573
0.3831 6.0 1338 0.3869 0.9537 0.9539 0.9537 0.9560
0.1822 7.0 1561 0.3246 0.9576 0.9576 0.9576 0.9589
0.1308 8.0 1784 0.2840 0.9523 0.9524 0.9523 0.9540
0.1087 9.0 2007 0.3299 0.9401 0.9393 0.9401 0.9460
0.0968 10.0 2230 0.2539 0.9548 0.9549 0.9548 0.9571
0.1088 11.0 2453 0.2290 0.9606 0.9606 0.9606 0.9617
0.7219 12.0 2676 0.2346 0.9606 0.9607 0.9606 0.9616
0.2103 13.0 2899 0.2119 0.9629 0.9629 0.9629 0.9640
0.0414 14.0 3122 0.2431 0.9590 0.9590 0.9590 0.9603
0.9212 15.0 3345 0.2141 0.9651 0.9651 0.9651 0.9664
0.0244 16.0 3568 0.2185 0.9620 0.9620 0.9620 0.9633
0.0468 17.0 3791 0.1949 0.9645 0.9645 0.9645 0.9655
1.2045 18.0 4014 0.1985 0.9637 0.9637 0.9637 0.9648
0.1907 19.0 4237 0.1894 0.9634 0.9635 0.9634 0.9646
0.0185 20.0 4460 0.1956 0.9640 0.9640 0.9640 0.9648
0.0159 21.0 4683 0.2118 0.9601 0.9601 0.9601 0.9610
0.0633 22.0 4906 0.1953 0.9634 0.9635 0.9634 0.9646
0.0244 23.0 5129 0.1915 0.9665 0.9665 0.9665 0.9673
0.008 24.0 5352 0.1842 0.9690 0.9690 0.9690 0.9698
0.2523 25.0 5575 0.1884 0.9670 0.9671 0.9670 0.9679

Framework versions

  • Transformers 4.45.1
  • Pytorch 2.3.0+cu118
  • Datasets 3.0.1
  • Tokenizers 0.20.0
Downloads last month
4
Safetensors
Model size
94.6M params
Tensor type
F32
·
Inference Examples
This model does not have enough activity to be deployed to Inference API (serverless) yet. Increase its social visibility and check back later, or deploy to Inference Endpoints (dedicated) instead.

Model tree for haris-waqar/trim-lesson7-classification

Finetuned
(656)
this model