harr's picture
add model
4d04310
metadata
license: apache-2.0
tags:
  - generated_from_trainer
datasets:
  - ingredients_yes_no
metrics:
  - precision
  - recall
  - f1
  - accuracy
model-index:
  - name: distilbert-base-uncased-finetuned-ingredients
    results:
      - task:
          name: Token Classification
          type: token-classification
        dataset:
          name: ingredients_yes_no
          type: ingredients_yes_no
          args: IngredientsYesNo
        metrics:
          - name: Precision
            type: precision
            value: 0.9898648648648649
          - name: Recall
            type: recall
            value: 0.9932203389830508
          - name: F1
            type: f1
            value: 0.9915397631133671
          - name: Accuracy
            type: accuracy
            value: 0.9978308026030369

distilbert-base-uncased-finetuned-ingredients

This model is a fine-tuned version of distilbert-base-uncased on the ingredients_yes_no dataset. It achieves the following results on the evaluation set:

  • Loss: 0.0105
  • Precision: 0.9899
  • Recall: 0.9932
  • F1: 0.9915
  • Accuracy: 0.9978

Model description

More information needed

Intended uses & limitations

More information needed

Training and evaluation data

More information needed

Training procedure

Training hyperparameters

The following hyperparameters were used during training:

  • learning_rate: 2e-05
  • train_batch_size: 16
  • eval_batch_size: 16
  • seed: 42
  • optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08
  • lr_scheduler_type: linear
  • num_epochs: 10

Training results

Training Loss Epoch Step Validation Loss Precision Recall F1 Accuracy
No log 1.0 47 0.2783 0.4 0.5492 0.4629 0.8910
No log 2.0 94 0.1089 0.8145 0.8780 0.8450 0.9718
No log 3.0 141 0.0273 0.9865 0.9932 0.9899 0.9973
No log 4.0 188 0.0168 0.9865 0.9932 0.9899 0.9973
No log 5.0 235 0.0156 0.9865 0.9898 0.9882 0.9957
No log 6.0 282 0.0129 0.9865 0.9932 0.9899 0.9973
No log 7.0 329 0.0121 0.9899 0.9932 0.9915 0.9978
No log 8.0 376 0.0115 0.9899 0.9932 0.9915 0.9978
No log 9.0 423 0.0108 0.9899 0.9932 0.9915 0.9978
No log 10.0 470 0.0105 0.9899 0.9932 0.9915 0.9978

Framework versions

  • Transformers 4.10.2
  • Pytorch 1.9.0+cu102
  • Datasets 1.11.0
  • Tokenizers 0.10.3