|
--- |
|
license: apache-2.0 |
|
base_model: distilbert-base-cased |
|
tags: |
|
- generated_from_trainer |
|
datasets: |
|
- shipping_label_ner |
|
metrics: |
|
- precision |
|
- recall |
|
- f1 |
|
- accuracy |
|
model-index: |
|
- name: ner_bert_model |
|
results: |
|
- task: |
|
name: Token Classification |
|
type: token-classification |
|
dataset: |
|
name: shipping_label_ner |
|
type: shipping_label_ner |
|
config: shipping_label_ner |
|
split: validation |
|
args: shipping_label_ner |
|
metrics: |
|
- name: Precision |
|
type: precision |
|
value: 0.5178571428571429 |
|
- name: Recall |
|
type: recall |
|
value: 0.7837837837837838 |
|
- name: F1 |
|
type: f1 |
|
value: 0.6236559139784947 |
|
- name: Accuracy |
|
type: accuracy |
|
value: 0.7627118644067796 |
|
--- |
|
|
|
<!-- This model card has been generated automatically according to the information the Trainer had access to. You |
|
should probably proofread and complete it, then remove this comment. --> |
|
|
|
# ner_bert_model |
|
|
|
This model is a fine-tuned version of [distilbert-base-cased](https://huggingface.co/distilbert-base-cased) on the shipping_label_ner dataset. |
|
It achieves the following results on the evaluation set: |
|
- Loss: 1.2010 |
|
- Precision: 0.5179 |
|
- Recall: 0.7838 |
|
- F1: 0.6237 |
|
- Accuracy: 0.7627 |
|
|
|
## Model description |
|
|
|
More information needed |
|
|
|
## Intended uses & limitations |
|
|
|
More information needed |
|
|
|
## Training and evaluation data |
|
|
|
More information needed |
|
|
|
## Training procedure |
|
|
|
### Training hyperparameters |
|
|
|
The following hyperparameters were used during training: |
|
- learning_rate: 2e-05 |
|
- train_batch_size: 4 |
|
- eval_batch_size: 2 |
|
- seed: 42 |
|
- optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08 |
|
- lr_scheduler_type: linear |
|
- num_epochs: 20 |
|
|
|
### Training results |
|
|
|
| Training Loss | Epoch | Step | Validation Loss | Precision | Recall | F1 | Accuracy | |
|
|:-------------:|:-----:|:----:|:---------------:|:---------:|:------:|:------:|:--------:| |
|
| No log | 1.0 | 14 | 0.6828 | 0.5179 | 0.7838 | 0.6237 | 0.7627 | |
|
| No log | 2.0 | 28 | 0.8587 | 0.5273 | 0.7838 | 0.6304 | 0.7712 | |
|
| No log | 3.0 | 42 | 0.7206 | 0.5577 | 0.7838 | 0.6517 | 0.8136 | |
|
| No log | 4.0 | 56 | 0.8983 | 0.5370 | 0.7838 | 0.6374 | 0.7797 | |
|
| No log | 5.0 | 70 | 0.6964 | 0.5472 | 0.7838 | 0.6444 | 0.8051 | |
|
| No log | 6.0 | 84 | 0.9793 | 0.5179 | 0.7838 | 0.6237 | 0.7627 | |
|
| No log | 7.0 | 98 | 0.6047 | 0.5472 | 0.7838 | 0.6444 | 0.8051 | |
|
| No log | 8.0 | 112 | 1.0809 | 0.5179 | 0.7838 | 0.6237 | 0.7797 | |
|
| No log | 9.0 | 126 | 1.1726 | 0.5179 | 0.7838 | 0.6237 | 0.7627 | |
|
| No log | 10.0 | 140 | 1.0067 | 0.5179 | 0.7838 | 0.6237 | 0.7627 | |
|
| No log | 11.0 | 154 | 1.1439 | 0.5088 | 0.7838 | 0.6170 | 0.7627 | |
|
| No log | 12.0 | 168 | 0.8971 | 0.5370 | 0.7838 | 0.6374 | 0.7881 | |
|
| No log | 13.0 | 182 | 1.0603 | 0.5179 | 0.7838 | 0.6237 | 0.7542 | |
|
| No log | 14.0 | 196 | 1.2095 | 0.5179 | 0.7838 | 0.6237 | 0.7627 | |
|
| No log | 15.0 | 210 | 1.2395 | 0.5179 | 0.7838 | 0.6237 | 0.7627 | |
|
| No log | 16.0 | 224 | 1.2509 | 0.5179 | 0.7838 | 0.6237 | 0.7627 | |
|
| No log | 17.0 | 238 | 1.2317 | 0.5179 | 0.7838 | 0.6237 | 0.7542 | |
|
| No log | 18.0 | 252 | 1.2656 | 0.5179 | 0.7838 | 0.6237 | 0.7542 | |
|
| No log | 19.0 | 266 | 1.1950 | 0.5179 | 0.7838 | 0.6237 | 0.7627 | |
|
| No log | 20.0 | 280 | 1.2010 | 0.5179 | 0.7838 | 0.6237 | 0.7627 | |
|
|
|
|
|
### Framework versions |
|
|
|
- Transformers 4.39.1 |
|
- Pytorch 2.2.1+cu121 |
|
- Datasets 2.18.0 |
|
- Tokenizers 0.15.2 |
|
|