Emotion_predictor / README.md
harshith20's picture
Update README.md
769cc58
|
raw
history blame
914 Bytes
metadata
license: openrail

import torch from transformers import AutoTokenizer, MobileBertForSequenceClassification

Load the saved model

model_name = 'harshith20/Emotion_predictor' tokenizer = AutoTokenizer.from_pretrained(model_name) model = MobileBertForSequenceClassification.from_pretrained(model_name)

Tokenize input text

input_text = "I am feeling happy today" encoded_text = tokenizer.encode_plus( input_text, max_length=128, padding='max_length', truncation=True, return_attention_mask=True, return_tensors='pt' )

Predict emotion

with torch.no_grad(): logits = model(**encoded_text)[0] predicted_emotion = torch.argmax(logits).item() emotion_labels = ['anger', 'fear', 'joy', 'love', 'sadness', 'surprise'] predicted_emotion_label = emotion_labels[predicted_emotion]

print(f"Input text: {input_text}") print(f"Predicted emotion: {predicted_emotion_label}")