haryoaw's picture
Initial Commit
a593326 verified
|
raw
history blame
2.65 kB
---
license: mit
base_model: microsoft/mdeberta-v3-base
tags:
- generated_from_trainer
metrics:
- accuracy
- f1
model-index:
- name: scenario-NON-KD-SCR-COPY-CDF-EN-D2_data-en-cardiff_eng_only44
results: []
---
<!-- This model card has been generated automatically according to the information the Trainer had access to. You
should probably proofread and complete it, then remove this comment. -->
# scenario-NON-KD-SCR-COPY-CDF-EN-D2_data-en-cardiff_eng_only44
This model is a fine-tuned version of [microsoft/mdeberta-v3-base](https://huggingface.co/microsoft/mdeberta-v3-base) on the None dataset.
It achieves the following results on the evaluation set:
- Loss: 5.7960
- Accuracy: 0.3448
- F1: 0.3121
## Model description
More information needed
## Intended uses & limitations
More information needed
## Training and evaluation data
More information needed
## Training procedure
### Training hyperparameters
The following hyperparameters were used during training:
- learning_rate: 5e-05
- train_batch_size: 32
- eval_batch_size: 32
- seed: 44
- optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08
- lr_scheduler_type: linear
- num_epochs: 30
### Training results
| Training Loss | Epoch | Step | Validation Loss | Accuracy | F1 |
|:-------------:|:-----:|:----:|:---------------:|:--------:|:------:|
| No log | 1.72 | 100 | 1.1461 | 0.3593 | 0.3245 |
| No log | 3.45 | 200 | 1.9614 | 0.3611 | 0.3512 |
| No log | 5.17 | 300 | 2.6180 | 0.3492 | 0.3157 |
| No log | 6.9 | 400 | 3.1787 | 0.3673 | 0.3633 |
| 0.4792 | 8.62 | 500 | 3.7077 | 0.3527 | 0.3312 |
| 0.4792 | 10.34 | 600 | 4.5969 | 0.3549 | 0.3296 |
| 0.4792 | 12.07 | 700 | 4.8433 | 0.3483 | 0.3159 |
| 0.4792 | 13.79 | 800 | 5.1229 | 0.3602 | 0.3462 |
| 0.4792 | 15.52 | 900 | 5.3356 | 0.3554 | 0.3354 |
| 0.0195 | 17.24 | 1000 | 5.5333 | 0.3567 | 0.3421 |
| 0.0195 | 18.97 | 1100 | 5.4819 | 0.3660 | 0.3534 |
| 0.0195 | 20.69 | 1200 | 5.6908 | 0.3607 | 0.3366 |
| 0.0195 | 22.41 | 1300 | 5.7411 | 0.3483 | 0.3192 |
| 0.0195 | 24.14 | 1400 | 5.7830 | 0.3501 | 0.3217 |
| 0.0081 | 25.86 | 1500 | 5.8334 | 0.3457 | 0.3113 |
| 0.0081 | 27.59 | 1600 | 5.7030 | 0.3532 | 0.3299 |
| 0.0081 | 29.31 | 1700 | 5.7960 | 0.3448 | 0.3121 |
### Framework versions
- Transformers 4.33.3
- Pytorch 2.1.1+cu121
- Datasets 2.14.5
- Tokenizers 0.13.3