Edit model card

scenario-kd-from-post-finetune-gold-silver-div-2-data-hate_speech_filipino-model

This model is a fine-tuned version of haryoaw/scenario-teacher-data-hate_speech_filipino-model-xlm-roberta-base on the hate_speech_filipino dataset. It achieves the following results on the evaluation set:

  • Loss: 0.8676
  • Accuracy: 0.7836
  • F1: 0.7765

Model description

More information needed

Intended uses & limitations

More information needed

Training and evaluation data

More information needed

Training procedure

Training hyperparameters

The following hyperparameters were used during training:

  • learning_rate: 5e-05
  • train_batch_size: 32
  • eval_batch_size: 32
  • seed: 42
  • optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08
  • lr_scheduler_type: linear
  • num_epochs: 6969

Training results

Training Loss Epoch Step Validation Loss Accuracy F1
No log 0.32 100 1.4538 0.7609 0.7566
No log 0.64 200 1.2488 0.7625 0.7594
No log 0.96 300 1.1488 0.7691 0.7658
No log 1.28 400 1.0930 0.7836 0.7666
1.2528 1.6 500 1.1216 0.7802 0.7576
1.2528 1.92 600 1.0502 0.7696 0.7658
1.2528 2.24 700 1.1185 0.7698 0.7729
1.2528 2.56 800 1.1002 0.7739 0.7621
1.2528 2.88 900 1.0090 0.7807 0.7662
0.8257 3.19 1000 1.0320 0.7836 0.7673
0.8257 3.51 1100 1.0162 0.7869 0.7673
0.8257 3.83 1200 0.9923 0.7880 0.7677
0.8257 4.15 1300 1.0061 0.7845 0.7653
0.8257 4.47 1400 0.9962 0.7878 0.7710
0.6686 4.79 1500 1.0640 0.7791 0.7774
0.6686 5.11 1600 0.9700 0.7864 0.7634
0.6686 5.43 1700 0.9535 0.7885 0.7680
0.6686 5.75 1800 0.9281 0.7961 0.7730
0.6686 6.07 1900 0.9843 0.7776 0.7754
0.5743 6.39 2000 0.9219 0.7937 0.7721
0.5743 6.71 2100 0.9237 0.7880 0.7760
0.5743 7.03 2200 0.9497 0.7899 0.7703
0.5743 7.35 2300 0.9365 0.7859 0.7747
0.5743 7.67 2400 1.0137 0.7663 0.7722
0.5272 7.99 2500 0.9682 0.7895 0.7678
0.5272 8.31 2600 0.9419 0.7843 0.7752
0.5272 8.63 2700 0.9684 0.7864 0.7792
0.5272 8.95 2800 0.9374 0.7935 0.7745
0.5272 9.27 2900 0.9877 0.7935 0.7790
0.4948 9.58 3000 0.9243 0.7859 0.7747
0.4948 9.9 3100 0.8968 0.7885 0.7710
0.4948 10.22 3200 0.8843 0.7845 0.7715
0.4948 10.54 3300 0.9175 0.7911 0.7738
0.4948 10.86 3400 0.9012 0.7932 0.7754
0.4658 11.18 3500 0.8939 0.7836 0.7739
0.4658 11.5 3600 0.9108 0.7819 0.7774
0.4658 11.82 3700 0.9651 0.7788 0.7771
0.4658 12.14 3800 0.8833 0.7949 0.7732
0.4658 12.46 3900 0.8860 0.7968 0.7777
0.4449 12.78 4000 0.8929 0.7873 0.7745
0.4449 13.1 4100 0.9065 0.7885 0.7824
0.4449 13.42 4200 0.9258 0.7802 0.7756
0.4449 13.74 4300 0.9231 0.7833 0.7818
0.4449 14.06 4400 0.8578 0.8001 0.7825
0.4249 14.38 4500 0.8835 0.7873 0.7838
0.4249 14.7 4600 0.9011 0.7909 0.7847
0.4249 15.02 4700 0.9035 0.7852 0.7816
0.4249 15.34 4800 0.8461 0.7956 0.7776
0.4249 15.65 4900 0.8402 0.7928 0.7835
0.4159 15.97 5000 0.8629 0.7888 0.7782
0.4159 16.29 5100 0.8737 0.7925 0.7737
0.4159 16.61 5200 0.8610 0.7916 0.7736
0.4159 16.93 5300 0.8533 0.7977 0.7819
0.4159 17.25 5400 0.8838 0.7906 0.7778
0.4032 17.57 5500 0.8602 0.7925 0.7793
0.4032 17.89 5600 0.8505 0.7942 0.7805
0.4032 18.21 5700 0.8540 0.7824 0.7782
0.4032 18.53 5800 0.9424 0.7916 0.7589
0.4032 18.85 5900 0.8829 0.7859 0.7796
0.3915 19.17 6000 0.8206 0.7975 0.7844
0.3915 19.49 6100 0.8676 0.7836 0.7765

Framework versions

  • Transformers 4.33.3
  • Pytorch 2.0.1
  • Datasets 2.14.5
  • Tokenizers 0.13.3
Downloads last month
2
Inference API
Unable to determine this model’s pipeline type. Check the docs .

Model tree for haryoaw/scenario-kd-from-post-finetune-gold-silver-div-2-data-hate_speech_filipino-model

Dataset used to train haryoaw/scenario-kd-from-post-finetune-gold-silver-div-2-data-hate_speech_filipino-model