metadata
license: mit
base_model: haryoaw/scenario-teacher-data-hate_speech_filipino-model-xlm-roberta-base
tags:
- generated_from_trainer
datasets:
- hate_speech_filipino
metrics:
- accuracy
- f1
model-index:
- name: >-
scenario-non-kd-from-post-finetune-div-2-data-hate_speech_filipino-model-haryoaw
results: []
scenario-non-kd-from-post-finetune-div-2-data-hate_speech_filipino-model-haryoaw
This model is a fine-tuned version of haryoaw/scenario-teacher-data-hate_speech_filipino-model-xlm-roberta-base on the hate_speech_filipino dataset. It achieves the following results on the evaluation set:
- Loss: 1.3495
- Accuracy: 0.7779
- F1: 0.7601
Model description
More information needed
Intended uses & limitations
More information needed
Training and evaluation data
More information needed
Training procedure
Training hyperparameters
The following hyperparameters were used during training:
- learning_rate: 5e-05
- train_batch_size: 32
- eval_batch_size: 32
- seed: 42
- optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08
- lr_scheduler_type: linear
- num_epochs: 6969
Training results
Training Loss | Epoch | Step | Validation Loss | Accuracy | F1 |
---|---|---|---|---|---|
No log | 0.32 | 100 | 0.5751 | 0.7339 | 0.7510 |
No log | 0.64 | 200 | 0.5171 | 0.7717 | 0.7450 |
No log | 0.96 | 300 | 0.4969 | 0.7784 | 0.7539 |
No log | 1.28 | 400 | 0.5408 | 0.7819 | 0.7548 |
0.4175 | 1.6 | 500 | 0.5410 | 0.7635 | 0.7597 |
0.4175 | 1.92 | 600 | 0.5166 | 0.7767 | 0.7324 |
0.4175 | 2.24 | 700 | 0.5823 | 0.7651 | 0.7450 |
0.4175 | 2.56 | 800 | 0.5731 | 0.7672 | 0.7293 |
0.4175 | 2.88 | 900 | 0.6860 | 0.7769 | 0.7458 |
0.2936 | 3.19 | 1000 | 0.7409 | 0.7684 | 0.7659 |
0.2936 | 3.51 | 1100 | 0.6544 | 0.7772 | 0.7487 |
0.2936 | 3.83 | 1200 | 0.6719 | 0.7604 | 0.7613 |
0.2936 | 4.15 | 1300 | 0.8242 | 0.7781 | 0.7471 |
0.2936 | 4.47 | 1400 | 0.8741 | 0.7838 | 0.7472 |
0.199 | 4.79 | 1500 | 0.7415 | 0.7755 | 0.7509 |
0.199 | 5.11 | 1600 | 0.9389 | 0.7897 | 0.7615 |
0.199 | 5.43 | 1700 | 0.7985 | 0.7840 | 0.7693 |
0.199 | 5.75 | 1800 | 0.9223 | 0.7741 | 0.7600 |
0.199 | 6.07 | 1900 | 1.0076 | 0.7727 | 0.7667 |
0.1553 | 6.39 | 2000 | 0.8541 | 0.7800 | 0.7682 |
0.1553 | 6.71 | 2100 | 0.9460 | 0.7810 | 0.7600 |
0.1553 | 7.03 | 2200 | 1.0575 | 0.7791 | 0.7571 |
0.1553 | 7.35 | 2300 | 1.0487 | 0.7687 | 0.7657 |
0.1553 | 7.67 | 2400 | 0.8495 | 0.7732 | 0.7568 |
0.1316 | 7.99 | 2500 | 0.9467 | 0.7812 | 0.7658 |
0.1316 | 8.31 | 2600 | 1.0491 | 0.7722 | 0.7611 |
0.1316 | 8.63 | 2700 | 1.0363 | 0.7691 | 0.7275 |
0.1316 | 8.95 | 2800 | 0.9130 | 0.7758 | 0.7448 |
0.1316 | 9.27 | 2900 | 1.4607 | 0.7717 | 0.7562 |
0.1137 | 9.58 | 3000 | 1.1874 | 0.7727 | 0.7567 |
0.1137 | 9.9 | 3100 | 1.1752 | 0.7836 | 0.7672 |
0.1137 | 10.22 | 3200 | 1.3495 | 0.7779 | 0.7601 |
Framework versions
- Transformers 4.33.3
- Pytorch 2.0.1
- Datasets 2.14.5
- Tokenizers 0.13.3