haryoaw's picture
Initial Commit
5b53884
metadata
license: mit
base_model: haryoaw/scenario-teacher-data-hate_speech_filipino-model-xlm-roberta-base
tags:
  - generated_from_trainer
datasets:
  - hate_speech_filipino
metrics:
  - accuracy
  - f1
model-index:
  - name: >-
      scenario-non-kd-from-post-finetune-div-2-data-hate_speech_filipino-model-haryoaw
    results: []

scenario-non-kd-from-post-finetune-div-2-data-hate_speech_filipino-model-haryoaw

This model is a fine-tuned version of haryoaw/scenario-teacher-data-hate_speech_filipino-model-xlm-roberta-base on the hate_speech_filipino dataset. It achieves the following results on the evaluation set:

  • Loss: 1.3495
  • Accuracy: 0.7779
  • F1: 0.7601

Model description

More information needed

Intended uses & limitations

More information needed

Training and evaluation data

More information needed

Training procedure

Training hyperparameters

The following hyperparameters were used during training:

  • learning_rate: 5e-05
  • train_batch_size: 32
  • eval_batch_size: 32
  • seed: 42
  • optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08
  • lr_scheduler_type: linear
  • num_epochs: 6969

Training results

Training Loss Epoch Step Validation Loss Accuracy F1
No log 0.32 100 0.5751 0.7339 0.7510
No log 0.64 200 0.5171 0.7717 0.7450
No log 0.96 300 0.4969 0.7784 0.7539
No log 1.28 400 0.5408 0.7819 0.7548
0.4175 1.6 500 0.5410 0.7635 0.7597
0.4175 1.92 600 0.5166 0.7767 0.7324
0.4175 2.24 700 0.5823 0.7651 0.7450
0.4175 2.56 800 0.5731 0.7672 0.7293
0.4175 2.88 900 0.6860 0.7769 0.7458
0.2936 3.19 1000 0.7409 0.7684 0.7659
0.2936 3.51 1100 0.6544 0.7772 0.7487
0.2936 3.83 1200 0.6719 0.7604 0.7613
0.2936 4.15 1300 0.8242 0.7781 0.7471
0.2936 4.47 1400 0.8741 0.7838 0.7472
0.199 4.79 1500 0.7415 0.7755 0.7509
0.199 5.11 1600 0.9389 0.7897 0.7615
0.199 5.43 1700 0.7985 0.7840 0.7693
0.199 5.75 1800 0.9223 0.7741 0.7600
0.199 6.07 1900 1.0076 0.7727 0.7667
0.1553 6.39 2000 0.8541 0.7800 0.7682
0.1553 6.71 2100 0.9460 0.7810 0.7600
0.1553 7.03 2200 1.0575 0.7791 0.7571
0.1553 7.35 2300 1.0487 0.7687 0.7657
0.1553 7.67 2400 0.8495 0.7732 0.7568
0.1316 7.99 2500 0.9467 0.7812 0.7658
0.1316 8.31 2600 1.0491 0.7722 0.7611
0.1316 8.63 2700 1.0363 0.7691 0.7275
0.1316 8.95 2800 0.9130 0.7758 0.7448
0.1316 9.27 2900 1.4607 0.7717 0.7562
0.1137 9.58 3000 1.1874 0.7727 0.7567
0.1137 9.9 3100 1.1752 0.7836 0.7672
0.1137 10.22 3200 1.3495 0.7779 0.7601

Framework versions

  • Transformers 4.33.3
  • Pytorch 2.0.1
  • Datasets 2.14.5
  • Tokenizers 0.13.3