haryoaw's picture
Initial Commit
996cda2
---
license: mit
base_model: xlm-roberta-base
tags:
- generated_from_trainer
datasets:
- hate_speech_filipino
metrics:
- accuracy
- f1
model-index:
- name: scenario-non-kd-from-pre-finetune-div-2-data-hate_speech_filipino-model-xlm-robe
results: []
---
<!-- This model card has been generated automatically according to the information the Trainer had access to. You
should probably proofread and complete it, then remove this comment. -->
# scenario-non-kd-from-pre-finetune-div-2-data-hate_speech_filipino-model-xlm-robe
This model is a fine-tuned version of [xlm-roberta-base](https://huggingface.co/xlm-roberta-base) on the hate_speech_filipino dataset.
It achieves the following results on the evaluation set:
- Loss: 1.0267
- Accuracy: 0.7750
- F1: 0.7538
## Model description
More information needed
## Intended uses & limitations
More information needed
## Training and evaluation data
More information needed
## Training procedure
### Training hyperparameters
The following hyperparameters were used during training:
- learning_rate: 5e-05
- train_batch_size: 32
- eval_batch_size: 32
- seed: 42
- optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08
- lr_scheduler_type: linear
- num_epochs: 6969
### Training results
| Training Loss | Epoch | Step | Validation Loss | Accuracy | F1 |
|:-------------:|:-----:|:----:|:---------------:|:--------:|:------:|
| No log | 0.32 | 100 | 0.5927 | 0.6957 | 0.7102 |
| No log | 0.64 | 200 | 0.5270 | 0.7372 | 0.7150 |
| No log | 0.96 | 300 | 0.5211 | 0.7427 | 0.7347 |
| No log | 1.28 | 400 | 0.5186 | 0.7628 | 0.7359 |
| 0.5494 | 1.6 | 500 | 0.5580 | 0.7476 | 0.7544 |
| 0.5494 | 1.92 | 600 | 0.4977 | 0.7462 | 0.6728 |
| 0.5494 | 2.24 | 700 | 0.4961 | 0.7580 | 0.7335 |
| 0.5494 | 2.56 | 800 | 0.4659 | 0.7776 | 0.7556 |
| 0.5494 | 2.88 | 900 | 0.5498 | 0.7682 | 0.7341 |
| 0.3965 | 3.19 | 1000 | 0.5319 | 0.7814 | 0.7666 |
| 0.3965 | 3.51 | 1100 | 0.5999 | 0.7765 | 0.7671 |
| 0.3965 | 3.83 | 1200 | 0.5410 | 0.7746 | 0.7599 |
| 0.3965 | 4.15 | 1300 | 0.7042 | 0.7779 | 0.7638 |
| 0.3965 | 4.47 | 1400 | 0.6954 | 0.7800 | 0.7513 |
| 0.2696 | 4.79 | 1500 | 0.6503 | 0.7767 | 0.7516 |
| 0.2696 | 5.11 | 1600 | 0.8617 | 0.7781 | 0.7654 |
| 0.2696 | 5.43 | 1700 | 0.6982 | 0.7698 | 0.7586 |
| 0.2696 | 5.75 | 1800 | 0.7800 | 0.7696 | 0.7618 |
| 0.2696 | 6.07 | 1900 | 0.8446 | 0.7802 | 0.7657 |
| 0.1866 | 6.39 | 2000 | 0.8388 | 0.7722 | 0.7566 |
| 0.1866 | 6.71 | 2100 | 1.0689 | 0.7540 | 0.7584 |
| 0.1866 | 7.03 | 2200 | 0.9079 | 0.7566 | 0.7596 |
| 0.1866 | 7.35 | 2300 | 0.8218 | 0.7691 | 0.7618 |
| 0.1866 | 7.67 | 2400 | 0.7888 | 0.7691 | 0.7177 |
| 0.149 | 7.99 | 2500 | 0.8802 | 0.7760 | 0.7637 |
| 0.149 | 8.31 | 2600 | 0.9296 | 0.7680 | 0.7700 |
| 0.149 | 8.63 | 2700 | 0.9560 | 0.7795 | 0.7518 |
| 0.149 | 8.95 | 2800 | 0.7176 | 0.7776 | 0.7542 |
| 0.149 | 9.27 | 2900 | 1.2068 | 0.7724 | 0.7689 |
| 0.1258 | 9.58 | 3000 | 1.0880 | 0.7727 | 0.7621 |
| 0.1258 | 9.9 | 3100 | 0.8090 | 0.7746 | 0.7430 |
| 0.1258 | 10.22 | 3200 | 1.1715 | 0.7753 | 0.7611 |
| 0.1258 | 10.54 | 3300 | 1.2526 | 0.7715 | 0.7630 |
| 0.1258 | 10.86 | 3400 | 1.1210 | 0.7791 | 0.7550 |
| 0.1183 | 11.18 | 3500 | 1.0898 | 0.7821 | 0.7632 |
| 0.1183 | 11.5 | 3600 | 1.1455 | 0.7795 | 0.7666 |
| 0.1183 | 11.82 | 3700 | 1.1337 | 0.7729 | 0.7635 |
| 0.1183 | 12.14 | 3800 | 1.2093 | 0.7814 | 0.7541 |
| 0.1183 | 12.46 | 3900 | 1.0898 | 0.7793 | 0.7604 |
| 0.0903 | 12.78 | 4000 | 1.1205 | 0.7743 | 0.7613 |
| 0.0903 | 13.1 | 4100 | 1.0267 | 0.7750 | 0.7538 |
### Framework versions
- Transformers 4.33.3
- Pytorch 2.0.1
- Datasets 2.14.5
- Tokenizers 0.13.3