Edit model card

hasan-mr/t5-small-finetuned-summarization-billsum

This model is a fine-tuned version of t5-small on an unknown dataset. It achieves the following results on the evaluation set:

  • Train Loss: 2.5791
  • Validation Loss: 2.3660
  • Train Rougel: tf.Tensor(0.129898, shape=(), dtype=float32)
  • Epoch: 3

Model description

More information needed

Intended uses & limitations

More information needed

Training and evaluation data

More information needed

Training procedure

Training hyperparameters

The following hyperparameters were used during training:

  • optimizer: {'name': 'AdamWeightDecay', 'learning_rate': 2e-05, 'decay': 0.0, 'beta_1': 0.9, 'beta_2': 0.999, 'epsilon': 1e-07, 'amsgrad': False, 'weight_decay_rate': 0.01}
  • training_precision: mixed_float16

Training results

Train Loss Validation Loss Train Rougel Epoch
3.3746 2.7009 tf.Tensor(0.10603927, shape=(), dtype=float32) 0
2.8289 2.5104 tf.Tensor(0.108828835, shape=(), dtype=float32) 1
2.6672 2.4200 tf.Tensor(0.1210279, shape=(), dtype=float32) 2
2.5791 2.3660 tf.Tensor(0.129898, shape=(), dtype=float32) 3

Framework versions

  • Transformers 4.34.0
  • TensorFlow 2.14.0
  • Datasets 2.14.5
  • Tokenizers 0.14.1
Downloads last month
3
Inference Examples
This model does not have enough activity to be deployed to Inference API (serverless) yet. Increase its social visibility and check back later, or deploy to Inference Endpoints (dedicated) instead.

Model tree for hasan-mr/t5-small-finetuned-summarization-billsum

Base model

google-t5/t5-small
Finetuned
(1502)
this model