metadata
license: mit
base_model: xlm-roberta-base
tags:
- generated_from_trainer
model-index:
- name: xlm_r_base-finetuned_after_mrp-v2-lucky-cloud-13
results: []
xlm_r_base-finetuned_after_mrp-v2-lucky-cloud-13
This model is a fine-tuned version of xlm-roberta-base on an unknown dataset. It achieves the following results on the evaluation set:
- Loss: 0.3887
- Precision 0: 0.8520
- Precision 1: 0.8061
- Recall 0: 0.8721
- Recall 1: 0.7783
- F1 0: 0.8619
- F1 1: 0.7920
- Precision Weighted: 0.8334
- Recall Weighted: 0.834
- F1 Weighted: 0.8335
- F1 Macro: 0.8269
Model description
More information needed
Intended uses & limitations
More information needed
Training and evaluation data
More information needed
Training procedure
Training hyperparameters
The following hyperparameters were used during training:
- learning_rate: 2e-05
- train_batch_size: 16
- eval_batch_size: 16
- seed: 42
- optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08
- lr_scheduler_type: linear
- lr_scheduler_warmup_ratio: 0.1
- num_epochs: 5
Training results
Training Loss | Epoch | Step | Validation Loss | Precision 0 | Precision 1 | Recall 0 | Recall 1 | F1 0 | F1 1 | Precision Weighted | Recall Weighted | F1 Weighted | F1 Macro |
---|---|---|---|---|---|---|---|---|---|---|---|---|---|
0.521 | 1.0 | 469 | 0.4041 | 0.8088 | 0.8493 | 0.9172 | 0.6828 | 0.8596 | 0.7570 | 0.8252 | 0.822 | 0.8179 | 0.8083 |
0.3826 | 2.0 | 938 | 0.3844 | 0.8719 | 0.7672 | 0.8296 | 0.8217 | 0.8502 | 0.7935 | 0.8294 | 0.8264 | 0.8272 | 0.8219 |
0.3552 | 3.0 | 1407 | 0.3887 | 0.8520 | 0.8061 | 0.8721 | 0.7783 | 0.8619 | 0.7920 | 0.8334 | 0.834 | 0.8335 | 0.8269 |
0.2801 | 4.0 | 1876 | 0.4242 | 0.8648 | 0.7843 | 0.8485 | 0.8059 | 0.8566 | 0.7949 | 0.8321 | 0.8312 | 0.8315 | 0.8258 |
0.2223 | 5.0 | 2345 | 0.4754 | 0.8755 | 0.7726 | 0.8337 | 0.8266 | 0.8541 | 0.7987 | 0.8337 | 0.8308 | 0.8316 | 0.8264 |
Framework versions
- Transformers 4.41.2
- Pytorch 2.3.0+cu121
- Datasets 2.19.2
- Tokenizers 0.19.1