|
--- |
|
license: apache-2.0 |
|
base_model: google/vit-base-patch16-224-in21k |
|
tags: |
|
- HHD |
|
- 3_class |
|
- ViT |
|
- generated_from_trainer |
|
model-index: |
|
- name: ViT_face |
|
results: [] |
|
--- |
|
|
|
<!-- This model card has been generated automatically according to the information the Trainer had access to. You |
|
should probably proofread and complete it, then remove this comment. --> |
|
|
|
# ViT_face |
|
|
|
This model is a fine-tuned version of [google/vit-base-patch16-224-in21k](https://huggingface.co/google/vit-base-patch16-224-in21k) on the face dataset. |
|
It achieves the following results on the evaluation set: |
|
- Loss: 0.6941 |
|
|
|
## Model description |
|
|
|
More information needed |
|
|
|
## Intended uses & limitations |
|
|
|
More information needed |
|
|
|
## Training and evaluation data |
|
|
|
More information needed |
|
|
|
## Training procedure |
|
|
|
### Training hyperparameters |
|
|
|
The following hyperparameters were used during training: |
|
- learning_rate: 2e-05 |
|
- train_batch_size: 128 |
|
- eval_batch_size: 128 |
|
- seed: 42 |
|
- optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08 |
|
- lr_scheduler_type: linear |
|
- num_epochs: 30 |
|
|
|
### Training results |
|
|
|
| Training Loss | Epoch | Step | Validation Loss | |
|
|:-------------:|:-----:|:----:|:---------------:| |
|
| No log | 1.0 | 10 | 1.0691 | |
|
| No log | 2.0 | 20 | 1.0378 | |
|
| No log | 3.0 | 30 | 0.9958 | |
|
| No log | 4.0 | 40 | 0.9437 | |
|
| No log | 5.0 | 50 | 0.8915 | |
|
| No log | 6.0 | 60 | 0.8396 | |
|
| No log | 7.0 | 70 | 0.7950 | |
|
| No log | 8.0 | 80 | 0.7602 | |
|
| No log | 9.0 | 90 | 0.7246 | |
|
| No log | 10.0 | 100 | 0.7009 | |
|
| No log | 11.0 | 110 | 0.6882 | |
|
| No log | 12.0 | 120 | 0.6700 | |
|
| No log | 13.0 | 130 | 0.6629 | |
|
| No log | 14.0 | 140 | 0.6646 | |
|
| No log | 15.0 | 150 | 0.6558 | |
|
| No log | 16.0 | 160 | 0.6679 | |
|
| No log | 17.0 | 170 | 0.6637 | |
|
| No log | 18.0 | 180 | 0.6689 | |
|
| No log | 19.0 | 190 | 0.6690 | |
|
| No log | 20.0 | 200 | 0.6744 | |
|
| No log | 21.0 | 210 | 0.6787 | |
|
| No log | 22.0 | 220 | 0.6823 | |
|
| No log | 23.0 | 230 | 0.6832 | |
|
| No log | 24.0 | 240 | 0.6866 | |
|
| No log | 25.0 | 250 | 0.6883 | |
|
| No log | 26.0 | 260 | 0.6912 | |
|
| No log | 27.0 | 270 | 0.6923 | |
|
| No log | 28.0 | 280 | 0.6935 | |
|
| No log | 29.0 | 290 | 0.6939 | |
|
| No log | 30.0 | 300 | 0.6941 | |
|
|
|
|
|
### Framework versions |
|
|
|
- Transformers 4.42.4 |
|
- Pytorch 2.4.0+cu121 |
|
- Datasets 2.21.0 |
|
- Tokenizers 0.19.1 |
|
|