helenai's picture
Add bert-base-uncased JPQD text-classification model
b90aa01
|
raw
history blame
2.16 kB
metadata
language:
  - en
license: apache-2.0
tags:
  - generated_from_trainer
datasets:
  - glue
metrics:
  - accuracy
model-index:
  - name: jpqd-bert-base-ft-sst2
    results:
      - task:
          name: Text Classification
          type: text-classification
        dataset:
          name: GLUE SST2
          type: glue
          args: sst2
        metrics:
          - name: Accuracy
            type: accuracy
            value: 0.9254587155963303

jpqd-bert-base-ft-sst2

Note This model was trained for only 1 epoch and is shared for testing purposes

This model is a fine-tuned version of bert-base-uncased on the GLUE SST2 dataset. It achieves the following results on the evaluation set:

  • Loss: 0.2181
  • Accuracy: 0.9255

Model description

More information needed

Intended uses & limitations

More information needed

Training and evaluation data

More information needed

Training procedure

Training hyperparameters

The following hyperparameters were used during training:

  • learning_rate: 2e-05
  • train_batch_size: 32
  • eval_batch_size: 8
  • seed: 42
  • optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08
  • lr_scheduler_type: linear
  • num_epochs: 1.0
  • mixed_precision_training: Native AMP

Training results

Training Loss Epoch Step Validation Loss Accuracy
0.4129 0.12 250 0.4416 0.8761
0.412 0.24 500 0.4969 0.8899
0.3191 0.36 750 0.2717 0.9163
0.2688 0.48 1000 0.2432 0.9117
0.3306 0.59 1250 0.2033 0.9243
0.224 0.71 1500 0.2383 0.9243
0.2082 0.83 1750 0.2233 0.9255
0.2161 0.95 2000 0.2207 0.9255

Framework versions

  • Transformers 4.25.1
  • Pytorch 1.13.1+cu117
  • Datasets 2.8.0
  • Tokenizers 0.13.2