hellork's picture
Update README.md
c1737ca verified
|
raw
history blame
5.4 kB
---
base_model: AdaptLLM/finance-chat
datasets:
- Open-Orca/OpenOrca
- GAIR/lima
- WizardLM/WizardLM_evol_instruct_V2_196k
language:
- en
license: llama2
metrics:
- accuracy
pipeline_tag: text-generation
tags:
- finance
- llama-cpp
- gguf-my-repo
model-index:
- name: finance-chat
results:
- task:
type: text-generation
name: Text Generation
dataset:
name: AI2 Reasoning Challenge (25-Shot)
type: ai2_arc
config: ARC-Challenge
split: test
args:
num_few_shot: 25
metrics:
- type: acc_norm
value: 53.75
name: normalized accuracy
source:
url: https://huggingface.co/spaces/HuggingFaceH4/open_llm_leaderboard?query=AdaptLLM/finance-chat
name: Open LLM Leaderboard
- task:
type: text-generation
name: Text Generation
dataset:
name: HellaSwag (10-Shot)
type: hellaswag
split: validation
args:
num_few_shot: 10
metrics:
- type: acc_norm
value: 76.6
name: normalized accuracy
source:
url: https://huggingface.co/spaces/HuggingFaceH4/open_llm_leaderboard?query=AdaptLLM/finance-chat
name: Open LLM Leaderboard
- task:
type: text-generation
name: Text Generation
dataset:
name: MMLU (5-Shot)
type: cais/mmlu
config: all
split: test
args:
num_few_shot: 5
metrics:
- type: acc
value: 50.16
name: accuracy
source:
url: https://huggingface.co/spaces/HuggingFaceH4/open_llm_leaderboard?query=AdaptLLM/finance-chat
name: Open LLM Leaderboard
- task:
type: text-generation
name: Text Generation
dataset:
name: TruthfulQA (0-shot)
type: truthful_qa
config: multiple_choice
split: validation
args:
num_few_shot: 0
metrics:
- type: mc2
value: 44.54
source:
url: https://huggingface.co/spaces/HuggingFaceH4/open_llm_leaderboard?query=AdaptLLM/finance-chat
name: Open LLM Leaderboard
- task:
type: text-generation
name: Text Generation
dataset:
name: Winogrande (5-shot)
type: winogrande
config: winogrande_xl
split: validation
args:
num_few_shot: 5
metrics:
- type: acc
value: 75.69
name: accuracy
source:
url: https://huggingface.co/spaces/HuggingFaceH4/open_llm_leaderboard?query=AdaptLLM/finance-chat
name: Open LLM Leaderboard
- task:
type: text-generation
name: Text Generation
dataset:
name: GSM8k (5-shot)
type: gsm8k
config: main
split: test
args:
num_few_shot: 5
metrics:
- type: acc
value: 18.8
name: accuracy
source:
url: https://huggingface.co/spaces/HuggingFaceH4/open_llm_leaderboard?query=AdaptLLM/finance-chat
name: Open LLM Leaderboard
---
# hellork/finance-chat-IQ4_NL-GGUF
This model was converted to GGUF format from [`AdaptLLM/finance-chat`](https://huggingface.co/AdaptLLM/finance-chat) using llama.cpp via the ggml.ai's [GGUF-my-repo](https://huggingface.co/spaces/ggml-org/gguf-my-repo) space.
Refer to the [original model card](https://huggingface.co/AdaptLLM/finance-chat) for more details on the model.
## Use with llama.cpp
Install llama.cpp through brew (works on Mac and Linux)
```bash
brew install llama.cpp
```
Invoke the llama.cpp server or the CLI.
### CLI:
```bash
llama-cli --hf-repo hellork/finance-chat-IQ4_NL-GGUF --hf-file finance-chat-iq4_nl-imat.gguf -p "The meaning to life and the universe is"
```
### Server:
```bash
llama-server --hf-repo hellork/finance-chat-IQ4_NL-GGUF --hf-file finance-chat-iq4_nl-imat.gguf -c 2048
```
### The Ship's Computer:
Interact with this model by speaking to it. Lean, fast, & private, networked speech to text, AI images, multi-modal voice chat, control apps, webcam, and sound with less than 4GiB of VRAM.
[whisper_dictation](https://github.com/themanyone/whisper_dictation)
```bash
git clone -b main --single-branch https://github.com/themanyone/whisper_dictation.git
pip install -r whisper_dictation/requirements.txt
git clone https://github.com/ggerganov/whisper.cpp
cd whisper.cpp
GGML_CUDA=1 make -j # assuming CUDA is available. see docs
ln -s server ~/.local/bin/whisper_cpp_server # (just put it somewhere in $PATH)
whisper_cpp_server -l en -m models/ggml-tiny.en.bin --port 7777
./whisper_cpp_client.py
```
See [the docs](https://github.com/themanyone/whisper_dictation) for tips on enabling the computer to talk back, draw AI images, carry out voice commands, and other features.
Note: You can also use this checkpoint directly through the [usage steps](https://github.com/ggerganov/llama.cpp?tab=readme-ov-file#usage) listed in the Llama.cpp repo as well.
Step 1: Clone llama.cpp from GitHub.
```
git clone https://github.com/ggerganov/llama.cpp
```
Step 2: Move into the llama.cpp folder and build it with `LLAMA_CURL=1` flag along with other hardware-specific flags (for ex: LLAMA_CUDA=1 for Nvidia GPUs on Linux).
```
cd llama.cpp && LLAMA_CURL=1 make
```
Step 3: Run inference through the main binary.
```
./llama-cli --hf-repo hellork/finance-chat-IQ4_NL-GGUF --hf-file finance-chat-iq4_nl-imat.gguf -p "The meaning to life and the universe is"
```
or
```
./llama-server --hf-repo hellork/finance-chat-IQ4_NL-GGUF --hf-file finance-chat-iq4_nl-imat.gguf -c 2048
```