hernawanvano
End of training
d14873b verified
metadata
library_name: transformers
license: mit
base_model: google/vivit-b-16x2-kinetics400
tags:
  - generated_from_trainer
metrics:
  - accuracy
model-index:
  - name: vivit-b-16x2-kinetics400-finetuned-ucf101-subset
    results: []

vivit-b-16x2-kinetics400-finetuned-ucf101-subset

This model is a fine-tuned version of google/vivit-b-16x2-kinetics400 on an unknown dataset. It achieves the following results on the evaluation set:

  • Loss: 0.6545
  • Accuracy: 0.8339

Model description

More information needed

Intended uses & limitations

More information needed

Training and evaluation data

More information needed

Training procedure

Training hyperparameters

The following hyperparameters were used during training:

  • learning_rate: 5e-05
  • train_batch_size: 4
  • eval_batch_size: 4
  • seed: 42
  • gradient_accumulation_steps: 2
  • total_train_batch_size: 8
  • optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08
  • lr_scheduler_type: linear
  • lr_scheduler_warmup_ratio: 0.1
  • training_steps: 7060

Training results

Training Loss Epoch Step Validation Loss Accuracy
1.1788 0.0494 349 1.1337 0.5608
0.93 1.0494 698 1.0407 0.6386
0.7623 2.0494 1047 0.8954 0.6775
0.6178 3.0494 1396 0.8011 0.7050
0.4934 4.0494 1745 0.8328 0.7034
0.5447 5.0494 2094 0.7323 0.7731
0.4106 6.0494 2443 0.6595 0.7763
0.4948 7.0494 2792 0.6986 0.7780
0.3257 8.0494 3141 0.5867 0.8152
0.2109 9.0494 3490 0.6624 0.8039
0.3482 10.0494 3839 0.6958 0.8104
0.4104 11.0494 4188 0.5619 0.8331
0.2176 12.0494 4537 0.5727 0.8217
0.1634 13.0494 4886 0.4984 0.8606
0.1256 14.0494 5235 0.5515 0.8444
0.188 15.0494 5584 0.5470 0.8428
0.2174 16.0494 5933 0.4847 0.8590
0.1619 17.0494 6282 0.5030 0.8784
0.3518 18.0494 6631 0.4783 0.8784
0.1533 19.0494 6980 0.5133 0.8703
0.101 20.0113 7060 0.5090 0.8703

Framework versions

  • Transformers 4.44.1
  • Pytorch 2.0.1+cu117
  • Datasets 2.21.0
  • Tokenizers 0.19.1