|
--- |
|
library_name: transformers |
|
tags: |
|
- text-generation-inference |
|
- transformers |
|
- unsloth |
|
- trl |
|
- llama |
|
language: |
|
- en |
|
base_model: meta-llama/Meta-Llama-3-8B-Instruct |
|
--- |
|
## Model Description |
|
|
|
This model was fine-tuned on meta-llama/Meta-Llama-3-8B-Instruct for function calling and json mode. |
|
|
|
## Usage |
|
### JSON Mode |
|
```python |
|
from transformers import AutoTokenizer, AutoModelForCausalLM |
|
import torch |
|
|
|
model_id = "hiieu/Meta-Llama-3-8B-Instruct-function-calling-json-mode" |
|
tokenizer = AutoTokenizer.from_pretrained(model_id) |
|
model = AutoModelForCausalLM.from_pretrained( |
|
model_id, |
|
torch_dtype=torch.bfloat16, |
|
device_map="auto", |
|
) |
|
|
|
messages = [ |
|
{"role": "system", "content": "You are a helpful assistant, answer in JSON with key \"message\""}, |
|
{"role": "user", "content": "Who are you?"}, |
|
] |
|
|
|
input_ids = tokenizer.apply_chat_template( |
|
messages, |
|
add_generation_prompt=True, |
|
return_tensors="pt" |
|
).to(model.device) |
|
|
|
terminators = [ |
|
tokenizer.eos_token_id, |
|
tokenizer.convert_tokens_to_ids("<|eot_id|>") |
|
] |
|
|
|
outputs = model.generate( |
|
input_ids, |
|
max_new_tokens=256, |
|
eos_token_id=terminators, |
|
do_sample=True, |
|
temperature=0.6, |
|
top_p=0.9, |
|
) |
|
response = outputs[0][input_ids.shape[-1]:] |
|
print(tokenizer.decode(response, skip_special_tokens=True)) |
|
# >> {"message": "I am a helpful assistant, with access to a vast amount of information. I can help you with tasks such as answering questions, providing definitions, translating text, and more. Feel free to ask me anything!"} |
|
``` |
|
|
|
### Function Calling |
|
Function calling requires two step inferences, below is the example: |
|
|
|
## Step 1: |
|
|
|
```python |
|
functions_metadata = [ |
|
{ |
|
"type": "function", |
|
"function": { |
|
"name": "get_temperature", |
|
"description": "get temperature of a city", |
|
"parameters": { |
|
"type": "object", |
|
"properties": { |
|
"city": { |
|
"type": "string", |
|
"description": "name" |
|
} |
|
}, |
|
"required": [ |
|
"city" |
|
] |
|
} |
|
} |
|
} |
|
] |
|
|
|
messages = [ |
|
{ "role": "system", "content": f"""You are a helpful assistant with access to the following functions: \n {str(functions_metadata)}\n\nTo use these functions respond with:\n<functioncall> {{ "name": "function_name", "arguments": {{ "arg_1": "value_1", "arg_1": "value_1", ... }} }} </functioncall>\n\nEdge cases you must handle:\n - If there are no functions that match the user request, you will respond politely that you cannot help."""}, |
|
{ "role": "user", "content": "What is the temperature in Tokyo right now?"} |
|
] |
|
|
|
input_ids = tokenizer.apply_chat_template( |
|
messages, |
|
add_generation_prompt=True, |
|
return_tensors="pt" |
|
).to(model.device) |
|
|
|
terminators = [ |
|
tokenizer.eos_token_id, |
|
tokenizer.convert_tokens_to_ids("<|eot_id|>") |
|
] |
|
|
|
outputs = model.generate( |
|
input_ids, |
|
max_new_tokens=256, |
|
eos_token_id=terminators, |
|
do_sample=True, |
|
temperature=0.6, |
|
top_p=0.9, |
|
) |
|
response = outputs[0][input_ids.shape[-1]:] |
|
print(tokenizer.decode(response, skip_special_tokens=True)) |
|
# >> <functioncall> {"name": "get_temperature", "arguments": '{"city": "Tokyo"}'} </functioncall>"""} |
|
``` |
|
## Step 2: |
|
|
|
```python |
|
messages = [ |
|
{ "role": "system", "content": f"""You are a helpful assistant with access to the following functions: \n {str(functions_metadata)}\n\nTo use these functions respond with:\n<functioncall> {{ "name": "function_name", "arguments": {{ "arg_1": "value_1", "arg_1": "value_1", ... }} }} </functioncall>\n\nEdge cases you must handle:\n - If there are no functions that match the user request, you will respond politely that you cannot help."""}, |
|
{ "role": "user", "content": "What is the temperature in Tokyo right now?"}, |
|
# You will get the previous prediction, extract it will the tag <functioncall> |
|
# execute the function and append it to the messages like below: |
|
{ "role": "assistant", "content": """<functioncall> {"name": "get_temperature", "arguments": '{"city": "Tokyo"}'} </functioncall>"""}, |
|
{ "role": "user", "content": """<function_response> {"temperature":30 C} </function_response>"""} |
|
] |
|
|
|
input_ids = tokenizer.apply_chat_template( |
|
messages, |
|
add_generation_prompt=True, |
|
return_tensors="pt" |
|
).to(model.device) |
|
|
|
terminators = [ |
|
tokenizer.eos_token_id, |
|
tokenizer.convert_tokens_to_ids("<|eot_id|>") |
|
] |
|
|
|
outputs = model.generate( |
|
input_ids, |
|
max_new_tokens=256, |
|
eos_token_id=terminators, |
|
do_sample=True, |
|
temperature=0.6, |
|
top_p=0.9, |
|
) |
|
response = outputs[0][input_ids.shape[-1]:] |
|
print(tokenizer.decode(response, skip_special_tokens=True)) |
|
# >> The current temperature in Tokyo is 30 degrees Celsius. |
|
``` |
|
|
|
# Uploaded model |
|
|
|
- **Developed by:** hiieu |
|
|
|
This model was trained 2x faster with [Unsloth](https://github.com/unslothai/unsloth) and Huggingface's TRL library. |
|
|
|
[<img src="https://raw.githubusercontent.com/unslothai/unsloth/main/images/unsloth%20made%20with%20love.png" width="200"/>](https://github.com/unslothai/unsloth) |