File size: 65,592 Bytes
6bdbfa5
e5f00f4
 
 
 
 
 
 
6bdbfa5
e5f00f4
a3e5b4d
 
e5f00f4
a3e5b4d
 
 
 
 
 
 
 
 
 
 
e5f00f4
a3e5b4d
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
e5f00f4
a3e5b4d
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
e5f00f4
a3e5b4d
 
 
 
 
 
 
 
e5f00f4
a3e5b4d
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
e5f00f4
6bdbfa5
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
a3e5b4d
6bdbfa5
 
a3e5b4d
6bdbfa5
 
a3e5b4d
6bdbfa5
 
a3e5b4d
6bdbfa5
 
a3e5b4d
6bdbfa5
 
a3e5b4d
6bdbfa5
 
a3e5b4d
6bdbfa5
 
a3e5b4d
6bdbfa5
 
a3e5b4d
6bdbfa5
 
a3e5b4d
6bdbfa5
 
a3e5b4d
6bdbfa5
 
a3e5b4d
6bdbfa5
 
a3e5b4d
6bdbfa5
 
a3e5b4d
6bdbfa5
 
a3e5b4d
6bdbfa5
 
a3e5b4d
6bdbfa5
 
 
 
 
 
 
 
 
 
 
 
 
e5f00f4
6bdbfa5
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
a3e5b4d
 
 
6bdbfa5
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
e5f00f4
6bdbfa5
 
 
a3e5b4d
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
6bdbfa5
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
e5f00f4
6bdbfa5
 
 
 
 
a3e5b4d
6bdbfa5
a3e5b4d
 
 
 
 
6bdbfa5
 
 
 
 
 
 
 
 
 
 
 
 
 
e5f00f4
6bdbfa5
e5f00f4
a3e5b4d
 
 
 
6bdbfa5
a3e5b4d
 
 
 
 
6bdbfa5
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
e5f00f4
6bdbfa5
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
e5f00f4
6bdbfa5
e5f00f4
 
6bdbfa5
 
 
 
 
 
 
 
a3e5b4d
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
6bdbfa5
 
 
 
e5f00f4
 
 
 
6bdbfa5
e5f00f4
6bdbfa5
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485
486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
512
513
514
515
516
517
518
519
520
521
522
523
524
525
526
527
528
529
530
531
532
533
534
535
536
537
538
539
540
541
542
543
544
545
546
547
548
549
550
551
552
553
554
555
556
557
558
559
560
561
562
563
564
565
566
567
568
569
570
571
572
573
574
575
576
577
578
579
580
581
582
583
584
585
586
587
588
589
590
591
592
593
594
595
596
597
598
599
600
601
602
603
604
605
606
607
608
609
610
611
612
613
614
615
616
617
618
619
620
621
622
623
624
625
626
627
628
629
630
631
632
633
634
635
636
637
638
639
640
641
642
643
644
645
646
647
648
649
650
651
652
653
654
655
656
657
658
659
660
661
662
663
664
665
666
667
668
669
670
671
672
673
674
675
676
677
678
679
680
681
682
683
684
685
686
687
688
689
690
691
692
693
694
695
696
697
698
699
700
701
702
703
704
705
706
707
708
709
710
711
712
713
714
715
716
717
718
719
720
721
722
723
724
725
726
727
728
729
730
731
732
733
734
735
736
737
738
739
740
741
742
743
744
745
746
747
748
749
750
751
752
753
754
755
756
757
758
759
760
761
762
763
764
765
766
767
768
769
770
771
772
773
774
775
776
777
778
779
780
781
782
783
784
785
786
787
788
789
790
791
792
793
794
795
796
797
798
799
800
801
802
803
804
805
806
807
808
809
810
811
812
813
814
815
816
817
818
819
820
821
822
823
824
825
826
827
828
829
830
831
832
833
834
835
836
837
838
839
840
841
842
843
844
845
846
847
848
849
850
851
852
853
854
855
856
857
858
859
860
861
862
863
864
865
866
867
868
869
870
871
872
873
874
875
876
877
878
879
880
881
882
883
884
885
886
887
888
889
890
891
892
893
894
895
896
897
898
899
900
901
902
---
tags:
- sentence-transformers
- sentence-similarity
- feature-extraction
- generated_from_trainer
- dataset_size:3507
- loss:GISTEmbedLoss
base_model: BAAI/bge-small-en-v1.5
widget:
- source_sentence: Is there an option to use ride-sharing apps like Ola or Uber for
    travel from the Airport to the Mela?
  sentences:
  - "Are there towing services available if my vehicle breaks down in the parking\
    \ lot?\n Yes, towing services are available if your vehicle breaks down in the\
    \ parking lot."
  - No, ride-sharing options like Ola or Uber are not available for travel from the
    Airport to the Mela. Pilgrims are encouraged to use other transport options like
    taxis, buses, or dedicated shuttle services provided for the event.
  - Baking bread requires certain key ingredients to achieve a perfect texture. Flour,
    water, and yeast are the base, while salt enhances flavor. The dough should be
    kneaded until smooth, then allowed to rise in a warm area. After a proper rise,
    shaping the loaf is essential for even baking in the oven.
- source_sentence: What is the significance of Akshaywat?
  sentences:
  - Akshaywat, or the "immortal banyan tree," is a spiritually significant site in
    Prayagraj, especially during the Kumbh Mela. Symbolizing immortality and eternal
    life, the tree is believed to possess divine qualities that remain unaffected
    by creation and destruction cycles. Mythologically, it is associated with Lord
    Brahma, who is said to have performed a sacrificial ritual under it, and Lord
    Vishnu, who is believed to have blessed devotees there. Akshaywat is also a sacred
    spot for performing Pind Daan, rituals for deceased ancestors, thought to help
    achieve Moksha (liberation). As a center of spiritual wisdom and pilgrimage for
    thousands of years, it continues to be a powerful symbol of divine blessings and
    spiritual strength for Hindu devotees.
  - 'What are the must-visit spiritual sites near Sangam?

    The Sangam area, where the Ganga, Yamuna, and the mystical Saraswati rivers converge,
    is surrounded by revered spiritual sites:


    Bade Hanumanji Temple:Bade Hanumanji Temple, also known as Lete Hanuman Mandir,
    is a unique and revered Hindu shrine located near the Sangam in Prayagraj. This
    temple is distinctive for its reclining idol of Lord Hanuman, a one-of-a-kind
    depiction of the deity. Each year, during the monsoon floods, the Ganga river
    rises to gently wash over the feet of Lord Hanuman—a sacred ritual believed to
    be a divine blessing


    Patalpuri Temple and Akshayavat Tree: Located within the Allahabad Fort, the ancient
    Patalpuri Temple is known for the Akshayavat (Indestructible Banyan Tree), considered
    sacred and a symbol of immortality.


    Mankameshwar Temple: A dedicated Shiva temple located near the Sangam, known for
    its serene atmosphere and the belief that prayers here fulfill desires.'
  - The uniqueness of brightly colored seashells lies in their mesmerizing patterns.
    Found along coastlines worldwide, these intricate formations tell stories of marine
    life and geological processes. Each shell serves as a protective covering, shielding
    the delicate organisms within from predators and environmental threats. Fishermen
    and beachcombers alike often treasure these natural artifacts, using them for
    decoration or as tools in crafting. The vibrant hues seen in shells, ranging from
    deep blues to vivid oranges, result from pigments produced by the mollusks themselves,
    influenced by their habitat and diet. Collecting seashells can foster a deep appreciation
    for marine ecosystems and the roles different species play within them, reminding
    us of the intricate balance of nature.
- source_sentence: Allahabad Junction ka matlab
  sentences:
  - 'Where is Anand Bhavan Museum located?

    Anand Bhawan is located on Jawaharlal Nehru Road, about 5 km from Allahabad Junction
    Railway Station, Prayagraj, Uttar Pradesh.'
  - Aartis are performed both in the mornings and evenings on the riverbanks in Prayagraj
    to honor the divine presence of the sacred rivers—Ganga, Yamuna, and mythical
    Saraswati—and to seek their blessings.  \n The morning Aarti symbolizes the beginning
    of a new day, invoking the divine to bestow grace, protection, and spiritual strength
    upon the devotees.  \n The evening Aarti serves as a ritual of gratitude, marking
    the end of the day by thanking the deities for their blessings and guidance.
  - 'Where is Khusro Bagh located?

    The garden is located approximately 3 km from Allahabad Junction Railway Station,
    making it easily accessible by local transport. The address is near the Lukarganj
    area, Allahabad, Uttar Pradesh.'
- source_sentence: Do E-Rickshaws have a maximum passenger limit, and what is it?
  sentences:
  - The ancient art of glassblowing dates back thousands of years. This intricate
    craft requires skill and precision, resulting in beautiful works that can be functional
    or decorative. From vases to intricate sculptures, the possibilities are endless.
  - E-Rickshaws have a maximum passenger limit of 4 people. It is important not to
    exceed this limit to ensure safety.
  - No, shuttle buses will not have dedicated volunteers specifically, but for assistance,
    you can reach out to the nearest information center.
- source_sentence: Tourists visit reason
  sentences:
  - 'What attractions are closest to the city center?

    Near the city center, you’ll find several attractions within a short distance.
    Anand Bhavan and Swaraj Bhavan are centrally located and offer insights into the
    Nehru family and India’s freedom movement. All Saints’ Cathedral, a magnificent
    Gothic-style church also known as the “Patthar Girja,” is located in Civil Lines
    and is one of Prayagraj''s architectural gems. Company Bagh, a peaceful park,
    is also close by and ideal for a quiet stroll. Chandrashekhar Azad Park and Khusro
    Bagh are both centrally located as well, providing green spaces along with historical
    importance.'
  - "When and where was the last Kumbh held?\n The last Mahakumbh was held in Haridwar\
    \ in 2021."
  - 'What is All Saints Cathedral, and why is it architecturally significant?

    All Saints Cathedral, locally known as Patthar Girja (Stone Church), is a renowned
    Anglican Christian Church located on M.G. Marg, Allahabad. Built in the late 19th
    century, it is one of the most beautiful and architecturally significant churches
    in Uttar Pradesh, attracting both tourists and pilgrims.'
pipeline_tag: sentence-similarity
library_name: sentence-transformers
metrics:
- cosine_accuracy@1
- cosine_accuracy@5
- cosine_accuracy@10
- cosine_precision@1
- cosine_precision@5
- cosine_precision@10
- cosine_recall@1
- cosine_recall@5
- cosine_recall@10
- cosine_ndcg@5
- cosine_ndcg@10
- cosine_ndcg@100
- cosine_mrr@5
- cosine_mrr@10
- cosine_mrr@100
- cosine_map@100
model-index:
- name: SentenceTransformer based on BAAI/bge-small-en-v1.5
  results:
  - task:
      type: information-retrieval
      name: Information Retrieval
    dataset:
      name: val evaluator
      type: val_evaluator
    metrics:
    - type: cosine_accuracy@1
      value: 0.3580387685290764
      name: Cosine Accuracy@1
    - type: cosine_accuracy@5
      value: 0.7092360319270239
      name: Cosine Accuracy@5
    - type: cosine_accuracy@10
      value: 0.7993158494868872
      name: Cosine Accuracy@10
    - type: cosine_precision@1
      value: 0.3580387685290764
      name: Cosine Precision@1
    - type: cosine_precision@5
      value: 0.14184720638540477
      name: Cosine Precision@5
    - type: cosine_precision@10
      value: 0.07993158494868871
      name: Cosine Precision@10
    - type: cosine_recall@1
      value: 0.3580387685290764
      name: Cosine Recall@1
    - type: cosine_recall@5
      value: 0.7092360319270239
      name: Cosine Recall@5
    - type: cosine_recall@10
      value: 0.7993158494868872
      name: Cosine Recall@10
    - type: cosine_ndcg@5
      value: 0.5538539564761136
      name: Cosine Ndcg@5
    - type: cosine_ndcg@10
      value: 0.5832174788373438
      name: Cosine Ndcg@10
    - type: cosine_ndcg@100
      value: 0.6189539076148961
      name: Cosine Ndcg@100
    - type: cosine_mrr@5
      value: 0.5013492968453055
      name: Cosine Mrr@5
    - type: cosine_mrr@10
      value: 0.5136020162530992
      name: Cosine Mrr@10
    - type: cosine_mrr@100
      value: 0.5210085507064763
      name: Cosine Mrr@100
    - type: cosine_map@100
      value: 0.5210085507064769
      name: Cosine Map@100
---

# SentenceTransformer based on BAAI/bge-small-en-v1.5

This is a [sentence-transformers](https://www.SBERT.net) model finetuned from [BAAI/bge-small-en-v1.5](https://huggingface.co/BAAI/bge-small-en-v1.5). It maps sentences & paragraphs to a 384-dimensional dense vector space and can be used for semantic textual similarity, semantic search, paraphrase mining, text classification, clustering, and more.

## Model Details

### Model Description
- **Model Type:** Sentence Transformer
- **Base model:** [BAAI/bge-small-en-v1.5](https://huggingface.co/BAAI/bge-small-en-v1.5) <!-- at revision 5c38ec7c405ec4b44b94cc5a9bb96e735b38267a -->
- **Maximum Sequence Length:** 512 tokens
- **Output Dimensionality:** 384 dimensions
- **Similarity Function:** Cosine Similarity
<!-- - **Training Dataset:** Unknown -->
<!-- - **Language:** Unknown -->
<!-- - **License:** Unknown -->

### Model Sources

- **Documentation:** [Sentence Transformers Documentation](https://sbert.net)
- **Repository:** [Sentence Transformers on GitHub](https://github.com/UKPLab/sentence-transformers)
- **Hugging Face:** [Sentence Transformers on Hugging Face](https://huggingface.co/models?library=sentence-transformers)

### Full Model Architecture

```
SentenceTransformer(
  (0): Transformer({'max_seq_length': 512, 'do_lower_case': True}) with Transformer model: BertModel 
  (1): Pooling({'word_embedding_dimension': 384, 'pooling_mode_cls_token': True, 'pooling_mode_mean_tokens': False, 'pooling_mode_max_tokens': False, 'pooling_mode_mean_sqrt_len_tokens': False, 'pooling_mode_weightedmean_tokens': False, 'pooling_mode_lasttoken': False, 'include_prompt': True})
  (2): Normalize()
)
```

## Usage

### Direct Usage (Sentence Transformers)

First install the Sentence Transformers library:

```bash
pip install -U sentence-transformers
```

Then you can load this model and run inference.
```python
from sentence_transformers import SentenceTransformer

# Download from the 🤗 Hub
model = SentenceTransformer("himanshu23099/bge_embedding_finetune1")
# Run inference
sentences = [
    'Tourists visit reason',
    'What is All Saints Cathedral, and why is it architecturally significant?\nAll Saints Cathedral, locally known as Patthar Girja (Stone Church), is a renowned Anglican Christian Church located on M.G. Marg, Allahabad. Built in the late 19th century, it is one of the most beautiful and architecturally significant churches in Uttar Pradesh, attracting both tourists and pilgrims.',
    "What attractions are closest to the city center?\nNear the city center, you’ll find several attractions within a short distance. Anand Bhavan and Swaraj Bhavan are centrally located and offer insights into the Nehru family and India’s freedom movement. All Saints’ Cathedral, a magnificent Gothic-style church also known as the “Patthar Girja,” is located in Civil Lines and is one of Prayagraj's architectural gems. Company Bagh, a peaceful park, is also close by and ideal for a quiet stroll. Chandrashekhar Azad Park and Khusro Bagh are both centrally located as well, providing green spaces along with historical importance.",
]
embeddings = model.encode(sentences)
print(embeddings.shape)
# [3, 384]

# Get the similarity scores for the embeddings
similarities = model.similarity(embeddings, embeddings)
print(similarities.shape)
# [3, 3]
```

<!--
### Direct Usage (Transformers)

<details><summary>Click to see the direct usage in Transformers</summary>

</details>
-->

<!--
### Downstream Usage (Sentence Transformers)

You can finetune this model on your own dataset.

<details><summary>Click to expand</summary>

</details>
-->

<!--
### Out-of-Scope Use

*List how the model may foreseeably be misused and address what users ought not to do with the model.*
-->

## Evaluation

### Metrics

#### Information Retrieval

* Dataset: `val_evaluator`
* Evaluated with [<code>InformationRetrievalEvaluator</code>](https://sbert.net/docs/package_reference/sentence_transformer/evaluation.html#sentence_transformers.evaluation.InformationRetrievalEvaluator)

| Metric              | Value     |
|:--------------------|:----------|
| cosine_accuracy@1   | 0.358     |
| cosine_accuracy@5   | 0.7092    |
| cosine_accuracy@10  | 0.7993    |
| cosine_precision@1  | 0.358     |
| cosine_precision@5  | 0.1418    |
| cosine_precision@10 | 0.0799    |
| cosine_recall@1     | 0.358     |
| cosine_recall@5     | 0.7092    |
| cosine_recall@10    | 0.7993    |
| cosine_ndcg@5       | 0.5539    |
| cosine_ndcg@10      | 0.5832    |
| **cosine_ndcg@100** | **0.619** |
| cosine_mrr@5        | 0.5013    |
| cosine_mrr@10       | 0.5136    |
| cosine_mrr@100      | 0.521     |
| cosine_map@100      | 0.521     |

<!--
## Bias, Risks and Limitations

*What are the known or foreseeable issues stemming from this model? You could also flag here known failure cases or weaknesses of the model.*
-->

<!--
### Recommendations

*What are recommendations with respect to the foreseeable issues? For example, filtering explicit content.*
-->

## Training Details

### Training Dataset

#### Unnamed Dataset


* Size: 3,507 training samples
* Columns: <code>anchor</code>, <code>positive</code>, and <code>negative</code>
* Approximate statistics based on the first 1000 samples:
  |         | anchor                                                                            | positive                                                                            | negative                                                                             |
  |:--------|:----------------------------------------------------------------------------------|:------------------------------------------------------------------------------------|:-------------------------------------------------------------------------------------|
  | type    | string                                                                            | string                                                                              | string                                                                               |
  | details | <ul><li>min: 4 tokens</li><li>mean: 11.76 tokens</li><li>max: 32 tokens</li></ul> | <ul><li>min: 8 tokens</li><li>mean: 116.82 tokens</li><li>max: 504 tokens</li></ul> | <ul><li>min: 19 tokens</li><li>mean: 121.15 tokens</li><li>max: 424 tokens</li></ul> |
* Samples:
  | anchor                                                                                                                     | positive                                                                                                                                                                                                                                                                                                                             | negative                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           |
  |:---------------------------------------------------------------------------------------------------------------------------|:-------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|:-----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|
  | <code>Where are the shuttle bus pickup points located within the Kumbh Mela grounds?</code>                                | <code>No, shuttle buses will not have dedicated volunteers specifically, but for assistance, you can reach out to the nearest information center.</code>                                                                                                                                                                             | <code>The ancient art of weaving has captivated many cultures worldwide. In some regions, artisans use intricate patterns to tell stories, while others focus on vibrant colors that highlight their heritage. Experimentation with different materials can yield unique textures, adding depth to the final product. Workshops often provide insights into traditional techniques, ensuring these skills are passed down through generations.</code>                                                                                                                                                                              |
  | <code>Hotel Ilawart start place</code>                                                                                     | <code>Is hotel pickup and drop-off available for the tours?<br> Fixed pickup points, such as Hotel Ilawart, are provided for all tours. In some cases, pickup and drop-off can be arranged for locations within a 5 km radius of the starting point, but you must confirm this with the tour operator at the time of booking.</code> | <code>What all is included in the trip package?<br>The trip package typically includes transportation, tour guide services, and breakfast. Meals such as lunch and dinner can be purchased separately.  Hotel bookings are usually not included in the package, so you will need to arrange accommodation independently.</code>                                                                                                                                                                                                                                                                                                    |
  | <code>Are there food stalls or restaurants at the Railway Junction that cater to dietary restrictions for pilgrims?</code> | <code>Yes, there are food stalls and restaurants available at the Railway Junction that cater to various dietary needs, including vegetarian and other dietary restrictions suitable for pilgrims.</code>                                                                                                                            | <code>The sound of the ocean waves rhythmically crashing against the shore creates a soothing symphony that invites relaxation. Seagulls soar above, occasionally diving down to catch a glimpse of fish beneath the surface. Beachgoers spread out their colorful towels, soaking up the sun's golden rays while children build sandcastles, their laughter mingling with the salty breeze. A distant sailboat glides across the horizon, hinting at adventures beyond the vast expanse of blue. As the sun sets, the sky transforms into a canvas of vibrant hues, signaling the end of another beautiful day by the sea.</code> |
* Loss: [<code>GISTEmbedLoss</code>](https://sbert.net/docs/package_reference/sentence_transformer/losses.html#gistembedloss) with these parameters:
  ```json
  {'guide': SentenceTransformer(
    (0): Transformer({'max_seq_length': 256, 'do_lower_case': False}) with Transformer model: BertModel 
    (1): Pooling({'word_embedding_dimension': 384, 'pooling_mode_cls_token': False, 'pooling_mode_mean_tokens': True, 'pooling_mode_max_tokens': False, 'pooling_mode_mean_sqrt_len_tokens': False, 'pooling_mode_weightedmean_tokens': False, 'pooling_mode_lasttoken': False, 'include_prompt': True})
    (2): Normalize()
  ), 'temperature': 0.01}
  ```

### Evaluation Dataset

#### Unnamed Dataset


* Size: 877 evaluation samples
* Columns: <code>anchor</code>, <code>positive</code>, and <code>negative</code>
* Approximate statistics based on the first 877 samples:
  |         | anchor                                                                            | positive                                                                            | negative                                                                             |
  |:--------|:----------------------------------------------------------------------------------|:------------------------------------------------------------------------------------|:-------------------------------------------------------------------------------------|
  | type    | string                                                                            | string                                                                              | string                                                                               |
  | details | <ul><li>min: 5 tokens</li><li>mean: 12.21 tokens</li><li>max: 32 tokens</li></ul> | <ul><li>min: 3 tokens</li><li>mean: 115.93 tokens</li><li>max: 471 tokens</li></ul> | <ul><li>min: 15 tokens</li><li>mean: 118.09 tokens</li><li>max: 422 tokens</li></ul> |
* Samples:
  | anchor                                               | positive                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            | negative                                                                                                                                                                                                                                                                                                                                                                                 |
  |:-----------------------------------------------------|:--------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|:-----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|
  | <code>Ganga bath benefit</code>                      | <code>What is the ritual of Snan or bathing?<br> Taking bath at the confluence of Ganga, Yamuna and invisible Saraswati during Mahakumbh has special significance. It is believed that by bathing in this holy confluence, all the sins of a person are washed away and he attains salvation.<br> <br> Bathing not only symbolizes personal purification, but it also conveys the message of social harmony and unity, where people from different cultures and communities come together to participate in this sacred ritual.<br> <br> It is considered that in special circumstances, the water of rivers also acquires a special life-giving quality, i.e. nectar, which not only leads to spiritual development along with purification of the mind, but also gives physical benefits by getting health. <br>  List of Aliases: [['Snan', 'bathing'], ]</code> | <code>What benefits will I get by attending the Kumbh Mela?<br>It is believed that bathing in the holy rivers during this time washes away sins and grants liberation from the cycle of life and death.<br> <br> Attending the Kumbh and taking a dip in the sacred rivers provides a unique opportunity for spiritual growth, purification, and selfrealization. ✨</code>               |
  | <code>Guide provide what</code>                      | <code>What is the guide-to-participant ratio for each tour?<br> Each tour is led by one guide per group, ensuring a personalized experience with ample opportunity for detailed insights and engagement. The guide will provide context, historical background, and answer any questions during the tour, offering a rich, informative experience for participants.</code>                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          | <code>How many people can join a group tour?<br>Group sizes depend on the type of vehicle selected. For instance, a Dzire accommodates up to 4 people, an Innova is suitable for 5-6 people, and larger groups (minimum 10 people) can travel in a Tempo Traveller. For even larger groups, multiple vehicles can be arranged to ensure everyone can travel together comfortably.</code> |
  | <code>How many rules must a Kalpvasi observe?</code> | <code>A Kalpvasi must observe 21 rules during Kalpvas, involving disciplines of the mind, speech, and actions.</code>                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               | <code>The dancing colors of autumn leaves create a tapestry of nature’s beauty, inviting every eye to witness the grandeur of the changing seasons. Every gust of wind carries a whisper of nostalgia as trees shed their vibrant garments.</code>                                                                                                                                       |
* Loss: [<code>GISTEmbedLoss</code>](https://sbert.net/docs/package_reference/sentence_transformer/losses.html#gistembedloss) with these parameters:
  ```json
  {'guide': SentenceTransformer(
    (0): Transformer({'max_seq_length': 256, 'do_lower_case': False}) with Transformer model: BertModel 
    (1): Pooling({'word_embedding_dimension': 384, 'pooling_mode_cls_token': False, 'pooling_mode_mean_tokens': True, 'pooling_mode_max_tokens': False, 'pooling_mode_mean_sqrt_len_tokens': False, 'pooling_mode_weightedmean_tokens': False, 'pooling_mode_lasttoken': False, 'include_prompt': True})
    (2): Normalize()
  ), 'temperature': 0.01}
  ```

### Training Hyperparameters
#### Non-Default Hyperparameters

- `eval_strategy`: steps
- `per_device_train_batch_size`: 16
- `gradient_accumulation_steps`: 2
- `learning_rate`: 1e-05
- `weight_decay`: 0.01
- `num_train_epochs`: 30
- `warmup_ratio`: 0.1
- `load_best_model_at_end`: True

#### All Hyperparameters
<details><summary>Click to expand</summary>

- `overwrite_output_dir`: False
- `do_predict`: False
- `eval_strategy`: steps
- `prediction_loss_only`: True
- `per_device_train_batch_size`: 16
- `per_device_eval_batch_size`: 8
- `per_gpu_train_batch_size`: None
- `per_gpu_eval_batch_size`: None
- `gradient_accumulation_steps`: 2
- `eval_accumulation_steps`: None
- `torch_empty_cache_steps`: None
- `learning_rate`: 1e-05
- `weight_decay`: 0.01
- `adam_beta1`: 0.9
- `adam_beta2`: 0.999
- `adam_epsilon`: 1e-08
- `max_grad_norm`: 1.0
- `num_train_epochs`: 30
- `max_steps`: -1
- `lr_scheduler_type`: linear
- `lr_scheduler_kwargs`: {}
- `warmup_ratio`: 0.1
- `warmup_steps`: 0
- `log_level`: passive
- `log_level_replica`: warning
- `log_on_each_node`: True
- `logging_nan_inf_filter`: True
- `save_safetensors`: True
- `save_on_each_node`: False
- `save_only_model`: False
- `restore_callback_states_from_checkpoint`: False
- `no_cuda`: False
- `use_cpu`: False
- `use_mps_device`: False
- `seed`: 42
- `data_seed`: None
- `jit_mode_eval`: False
- `use_ipex`: False
- `bf16`: False
- `fp16`: False
- `fp16_opt_level`: O1
- `half_precision_backend`: auto
- `bf16_full_eval`: False
- `fp16_full_eval`: False
- `tf32`: None
- `local_rank`: 0
- `ddp_backend`: None
- `tpu_num_cores`: None
- `tpu_metrics_debug`: False
- `debug`: []
- `dataloader_drop_last`: False
- `dataloader_num_workers`: 0
- `dataloader_prefetch_factor`: None
- `past_index`: -1
- `disable_tqdm`: False
- `remove_unused_columns`: True
- `label_names`: None
- `load_best_model_at_end`: True
- `ignore_data_skip`: False
- `fsdp`: []
- `fsdp_min_num_params`: 0
- `fsdp_config`: {'min_num_params': 0, 'xla': False, 'xla_fsdp_v2': False, 'xla_fsdp_grad_ckpt': False}
- `fsdp_transformer_layer_cls_to_wrap`: None
- `accelerator_config`: {'split_batches': False, 'dispatch_batches': None, 'even_batches': True, 'use_seedable_sampler': True, 'non_blocking': False, 'gradient_accumulation_kwargs': None}
- `deepspeed`: None
- `label_smoothing_factor`: 0.0
- `optim`: adamw_torch
- `optim_args`: None
- `adafactor`: False
- `group_by_length`: False
- `length_column_name`: length
- `ddp_find_unused_parameters`: None
- `ddp_bucket_cap_mb`: None
- `ddp_broadcast_buffers`: False
- `dataloader_pin_memory`: True
- `dataloader_persistent_workers`: False
- `skip_memory_metrics`: True
- `use_legacy_prediction_loop`: False
- `push_to_hub`: False
- `resume_from_checkpoint`: None
- `hub_model_id`: None
- `hub_strategy`: every_save
- `hub_private_repo`: False
- `hub_always_push`: False
- `gradient_checkpointing`: False
- `gradient_checkpointing_kwargs`: None
- `include_inputs_for_metrics`: False
- `include_for_metrics`: []
- `eval_do_concat_batches`: True
- `fp16_backend`: auto
- `push_to_hub_model_id`: None
- `push_to_hub_organization`: None
- `mp_parameters`: 
- `auto_find_batch_size`: False
- `full_determinism`: False
- `torchdynamo`: None
- `ray_scope`: last
- `ddp_timeout`: 1800
- `torch_compile`: False
- `torch_compile_backend`: None
- `torch_compile_mode`: None
- `dispatch_batches`: None
- `split_batches`: None
- `include_tokens_per_second`: False
- `include_num_input_tokens_seen`: False
- `neftune_noise_alpha`: None
- `optim_target_modules`: None
- `batch_eval_metrics`: False
- `eval_on_start`: False
- `use_liger_kernel`: False
- `eval_use_gather_object`: False
- `average_tokens_across_devices`: False
- `prompts`: None
- `batch_sampler`: batch_sampler
- `multi_dataset_batch_sampler`: proportional

</details>

### Training Logs
<details><summary>Click to expand</summary>

| Epoch       | Step     | Training Loss | Validation Loss | val_evaluator_cosine_ndcg@100 |
|:-----------:|:--------:|:-------------:|:---------------:|:-----------------------------:|
| 0.0909      | 10       | -             | 1.0916          | 0.4285                        |
| 0.1818      | 20       | -             | 1.0683          | 0.4295                        |
| 0.2727      | 30       | -             | 1.0320          | 0.4301                        |
| 0.3636      | 40       | -             | 0.9845          | 0.4309                        |
| 0.4545      | 50       | 1.8466        | 0.9320          | 0.4340                        |
| 0.5455      | 60       | -             | 0.8804          | 0.4352                        |
| 0.6364      | 70       | -             | 0.8284          | 0.4368                        |
| 0.7273      | 80       | -             | 0.7754          | 0.4420                        |
| 0.8182      | 90       | -             | 0.7211          | 0.4425                        |
| 0.9091      | 100      | 1.4317        | 0.6711          | 0.4442                        |
| 1.0         | 110      | -             | 0.6193          | 0.4483                        |
| 1.0909      | 120      | -             | 0.5700          | 0.4555                        |
| 1.1818      | 130      | -             | 0.5271          | 0.4603                        |
| 1.2727      | 140      | -             | 0.4892          | 0.4620                        |
| 1.3636      | 150      | 1.0007        | 0.4611          | 0.4651                        |
| 1.4545      | 160      | -             | 0.4276          | 0.4706                        |
| 1.5455      | 170      | -             | 0.4005          | 0.4698                        |
| 1.6364      | 180      | -             | 0.3818          | 0.4728                        |
| 1.7273      | 190      | -             | 0.3573          | 0.4763                        |
| 1.8182      | 200      | 0.7585        | 0.3321          | 0.4783                        |
| 1.9091      | 210      | -             | 0.3091          | 0.4806                        |
| 2.0         | 220      | -             | 0.2963          | 0.4833                        |
| 2.0909      | 230      | -             | 0.2875          | 0.4834                        |
| 2.1818      | 240      | -             | 0.2793          | 0.4842                        |
| 2.2727      | 250      | 0.5586        | 0.2729          | 0.4879                        |
| 2.3636      | 260      | -             | 0.2663          | 0.4885                        |
| 2.4545      | 270      | -             | 0.2576          | 0.4925                        |
| 2.5455      | 280      | -             | 0.2477          | 0.5006                        |
| 2.6364      | 290      | -             | 0.2353          | 0.5058                        |
| 2.7273      | 300      | 0.4751        | 0.2278          | 0.5112                        |
| 2.8182      | 310      | -             | 0.2206          | 0.5096                        |
| 2.9091      | 320      | -             | 0.2130          | 0.5144                        |
| 3.0         | 330      | -             | 0.2043          | 0.5202                        |
| 3.0909      | 340      | -             | 0.1973          | 0.5214                        |
| 3.1818      | 350      | 0.381         | 0.1964          | 0.5271                        |
| 3.2727      | 360      | -             | 0.1968          | 0.5325                        |
| 3.3636      | 370      | -             | 0.1922          | 0.5289                        |
| 3.4545      | 380      | -             | 0.1869          | 0.5329                        |
| 3.5455      | 390      | -             | 0.1789          | 0.5391                        |
| 3.6364      | 400      | 0.3886        | 0.1743          | 0.5464                        |
| 3.7273      | 410      | -             | 0.1730          | 0.5472                        |
| 3.8182      | 420      | -             | 0.1699          | 0.5479                        |
| 3.9091      | 430      | -             | 0.1644          | 0.5525                        |
| 4.0         | 440      | -             | 0.1623          | 0.5511                        |
| 4.0909      | 450      | 0.2977        | 0.1600          | 0.5513                        |
| 4.1818      | 460      | -             | 0.1540          | 0.5519                        |
| 4.2727      | 470      | -             | 0.1492          | 0.5589                        |
| 4.3636      | 480      | -             | 0.1450          | 0.5624                        |
| 4.4545      | 490      | -             | 0.1426          | 0.5644                        |
| 4.5455      | 500      | 0.2496        | 0.1407          | 0.5629                        |
| 4.6364      | 510      | -             | 0.1390          | 0.5663                        |
| 4.7273      | 520      | -             | 0.1399          | 0.5695                        |
| 4.8182      | 530      | -             | 0.1377          | 0.5764                        |
| 4.9091      | 540      | -             | 0.1357          | 0.5753                        |
| 5.0         | 550      | 0.2322        | 0.1364          | 0.5827                        |
| 5.0909      | 560      | -             | 0.1327          | 0.5804                        |
| 5.1818      | 570      | -             | 0.1300          | 0.5799                        |
| 5.2727      | 580      | -             | 0.1307          | 0.5816                        |
| 5.3636      | 590      | -             | 0.1331          | 0.5868                        |
| 5.4545      | 600      | 0.2219        | 0.1322          | 0.5839                        |
| 5.5455      | 610      | -             | 0.1332          | 0.5822                        |
| 5.6364      | 620      | -             | 0.1323          | 0.5817                        |
| 5.7273      | 630      | -             | 0.1311          | 0.5845                        |
| 5.8182      | 640      | -             | 0.1282          | 0.5834                        |
| 5.9091      | 650      | 0.1982        | 0.1253          | 0.5870                        |
| 6.0         | 660      | -             | 0.1242          | 0.5880                        |
| 6.0909      | 670      | -             | 0.1241          | 0.5859                        |
| 6.1818      | 680      | -             | 0.1265          | 0.5885                        |
| 6.2727      | 690      | -             | 0.1287          | 0.5964                        |
| 6.3636      | 700      | 0.1613        | 0.1321          | 0.5968                        |
| 6.4545      | 710      | -             | 0.1332          | 0.5979                        |
| 6.5455      | 720      | -             | 0.1295          | 0.6016                        |
| 6.6364      | 730      | -             | 0.1262          | 0.6022                        |
| 6.7273      | 740      | -             | 0.1242          | 0.6020                        |
| 6.8182      | 750      | 0.172         | 0.1238          | 0.6037                        |
| 6.9091      | 760      | -             | 0.1222          | 0.6036                        |
| 7.0         | 770      | -             | 0.1213          | 0.6038                        |
| 7.0909      | 780      | -             | 0.1208          | 0.6038                        |
| 7.1818      | 790      | -             | 0.1200          | 0.6011                        |
| 7.2727      | 800      | 0.1486        | 0.1196          | 0.5979                        |
| 7.3636      | 810      | -             | 0.1227          | 0.6015                        |
| 7.4545      | 820      | -             | 0.1225          | 0.6004                        |
| 7.5455      | 830      | -             | 0.1195          | 0.6045                        |
| 7.6364      | 840      | -             | 0.1202          | 0.6045                        |
| 7.7273      | 850      | 0.1501        | 0.1208          | 0.6044                        |
| 7.8182      | 860      | -             | 0.1177          | 0.6038                        |
| 7.9091      | 870      | -             | 0.1161          | 0.6031                        |
| 8.0         | 880      | -             | 0.1168          | 0.6024                        |
| 8.0909      | 890      | -             | 0.1175          | 0.6050                        |
| 8.1818      | 900      | 0.1563        | 0.1157          | 0.6063                        |
| 8.2727      | 910      | -             | 0.1146          | 0.6056                        |
| 8.3636      | 920      | -             | 0.1152          | 0.6073                        |
| 8.4545      | 930      | -             | 0.1167          | 0.6077                        |
| 8.5455      | 940      | -             | 0.1172          | 0.6087                        |
| 8.6364      | 950      | 0.1247        | 0.1169          | 0.6077                        |
| 8.7273      | 960      | -             | 0.1159          | 0.6056                        |
| 8.8182      | 970      | -             | 0.1151          | 0.6066                        |
| 8.9091      | 980      | -             | 0.1161          | 0.6089                        |
| 9.0         | 990      | -             | 0.1187          | 0.6071                        |
| 9.0909      | 1000     | 0.1497        | 0.1157          | 0.6110                        |
| 9.1818      | 1010     | -             | 0.1148          | 0.6086                        |
| 9.2727      | 1020     | -             | 0.1134          | 0.6125                        |
| 9.3636      | 1030     | -             | 0.1173          | 0.6114                        |
| 9.4545      | 1040     | -             | 0.1174          | 0.6118                        |
| 9.5455      | 1050     | 0.1025        | 0.1159          | 0.6127                        |
| 9.6364      | 1060     | -             | 0.1118          | 0.6093                        |
| 9.7273      | 1070     | -             | 0.1114          | 0.6103                        |
| 9.8182      | 1080     | -             | 0.1128          | 0.6102                        |
| 9.9091      | 1090     | -             | 0.1142          | 0.6116                        |
| 10.0        | 1100     | 0.128         | 0.1147          | 0.6115                        |
| 10.0909     | 1110     | -             | 0.1143          | 0.6095                        |
| 10.1818     | 1120     | -             | 0.1134          | 0.6073                        |
| 10.2727     | 1130     | -             | 0.1137          | 0.6059                        |
| 10.3636     | 1140     | -             | 0.1143          | 0.6049                        |
| 10.4545     | 1150     | 0.1413        | 0.1145          | 0.6047                        |
| 10.5455     | 1160     | -             | 0.1154          | 0.6032                        |
| 10.6364     | 1170     | -             | 0.1158          | 0.6044                        |
| 10.7273     | 1180     | -             | 0.1151          | 0.6060                        |
| 10.8182     | 1190     | -             | 0.1145          | 0.6081                        |
| 10.9091     | 1200     | 0.1223        | 0.1133          | 0.6084                        |
| 11.0        | 1210     | -             | 0.1121          | 0.6090                        |
| 11.0909     | 1220     | -             | 0.1130          | 0.6129                        |
| 11.1818     | 1230     | -             | 0.1134          | 0.6089                        |
| 11.2727     | 1240     | -             | 0.1136          | 0.6112                        |
| 11.3636     | 1250     | 0.1199        | 0.1142          | 0.6134                        |
| 11.4545     | 1260     | -             | 0.1128          | 0.6145                        |
| 11.5455     | 1270     | -             | 0.1097          | 0.6148                        |
| 11.6364     | 1280     | -             | 0.1081          | 0.6122                        |
| 11.7273     | 1290     | -             | 0.1074          | 0.6126                        |
| 11.8182     | 1300     | 0.1143        | 0.1063          | 0.6167                        |
| 11.9091     | 1310     | -             | 0.1067          | 0.6163                        |
| 12.0        | 1320     | -             | 0.1067          | 0.6190                        |
| 12.0909     | 1330     | -             | 0.1075          | 0.6193                        |
| 12.1818     | 1340     | -             | 0.1092          | 0.6222                        |
| 12.2727     | 1350     | 0.0974        | 0.1087          | 0.6199                        |
| 12.3636     | 1360     | -             | 0.1078          | 0.6183                        |
| 12.4545     | 1370     | -             | 0.1072          | 0.6180                        |
| 12.5455     | 1380     | -             | 0.1072          | 0.6172                        |
| 12.6364     | 1390     | -             | 0.1072          | 0.6209                        |
| 12.7273     | 1400     | 0.1257        | 0.1056          | 0.6152                        |
| 12.8182     | 1410     | -             | 0.1046          | 0.6149                        |
| 12.9091     | 1420     | -             | 0.1034          | 0.6142                        |
| 13.0        | 1430     | -             | 0.1034          | 0.6165                        |
| 13.0909     | 1440     | -             | 0.1046          | 0.6165                        |
| 13.1818     | 1450     | 0.0866        | 0.1064          | 0.6177                        |
| 13.2727     | 1460     | -             | 0.1070          | 0.6158                        |
| 13.3636     | 1470     | -             | 0.1055          | 0.6151                        |
| 13.4545     | 1480     | -             | 0.1040          | 0.6182                        |
| 13.5455     | 1490     | -             | 0.1042          | 0.6144                        |
| 13.6364     | 1500     | 0.0757        | 0.1042          | 0.6151                        |
| 13.7273     | 1510     | -             | 0.1056          | 0.6169                        |
| 13.8182     | 1520     | -             | 0.1059          | 0.6172                        |
| 13.9091     | 1530     | -             | 0.1059          | 0.6181                        |
| 14.0        | 1540     | -             | 0.1042          | 0.6167                        |
| 14.0909     | 1550     | 0.0754        | 0.1043          | 0.6198                        |
| 14.1818     | 1560     | -             | 0.1044          | 0.6215                        |
| 14.2727     | 1570     | -             | 0.1042          | 0.6205                        |
| 14.3636     | 1580     | -             | 0.1058          | 0.6196                        |
| 14.4545     | 1590     | -             | 0.1076          | 0.6212                        |
| 14.5455     | 1600     | 0.0901        | 0.1098          | 0.6219                        |
| 14.6364     | 1610     | -             | 0.1095          | 0.6247                        |
| 14.7273     | 1620     | -             | 0.1084          | 0.6209                        |
| 14.8182     | 1630     | -             | 0.1063          | 0.6164                        |
| 14.9091     | 1640     | -             | 0.1049          | 0.6170                        |
| 15.0        | 1650     | 0.1034        | 0.1043          | 0.6199                        |
| 15.0909     | 1660     | -             | 0.1033          | 0.6216                        |
| 15.1818     | 1670     | -             | 0.1035          | 0.6244                        |
| 15.2727     | 1680     | -             | 0.1048          | 0.6286                        |
| 15.3636     | 1690     | -             | 0.1070          | 0.6239                        |
| **15.4545** | **1700** | **0.0821**    | **0.1084**      | **0.6237**                    |
| 15.5455     | 1710     | -             | 0.1095          | 0.6234                        |
| 15.6364     | 1720     | -             | 0.1090          | 0.6221                        |
| 15.7273     | 1730     | -             | 0.1089          | 0.6227                        |
| 15.8182     | 1740     | -             | 0.1091          | 0.6201                        |
| 15.9091     | 1750     | 0.074         | 0.1089          | 0.6195                        |
| 16.0        | 1760     | -             | 0.1082          | 0.6205                        |
| 16.0909     | 1770     | -             | 0.1076          | 0.6198                        |
| 16.1818     | 1780     | -             | 0.1079          | 0.6195                        |
| 16.2727     | 1790     | -             | 0.1081          | 0.6238                        |
| 16.3636     | 1800     | 0.083         | 0.1066          | 0.6219                        |
| 16.4545     | 1810     | -             | 0.1055          | 0.6201                        |
| 16.5455     | 1820     | -             | 0.1045          | 0.6217                        |
| 16.6364     | 1830     | -             | 0.1030          | 0.6198                        |
| 16.7273     | 1840     | -             | 0.1012          | 0.6192                        |
| 16.8182     | 1850     | 0.0569        | 0.1012          | 0.6198                        |
| 16.9091     | 1860     | -             | 0.1017          | 0.6224                        |
| 17.0        | 1870     | -             | 0.1024          | 0.6220                        |
| 17.0909     | 1880     | -             | 0.1038          | 0.6217                        |
| 17.1818     | 1890     | -             | 0.1046          | 0.6231                        |
| 17.2727     | 1900     | 0.1054        | 0.1056          | 0.6191                        |
| 17.3636     | 1910     | -             | 0.1064          | 0.6220                        |
| 17.4545     | 1920     | -             | 0.1078          | 0.6213                        |
| 17.5455     | 1930     | -             | 0.1077          | 0.6228                        |
| 17.6364     | 1940     | -             | 0.1071          | 0.6194                        |
| 17.7273     | 1950     | 0.0588        | 0.1073          | 0.6227                        |
| 17.8182     | 1960     | -             | 0.1073          | 0.6219                        |
| 17.9091     | 1970     | -             | 0.1074          | 0.6217                        |
| 18.0        | 1980     | -             | 0.1073          | 0.6239                        |
| 18.0909     | 1990     | -             | 0.1074          | 0.6210                        |
| 18.1818     | 2000     | 0.0772        | 0.1076          | 0.6226                        |
| 18.2727     | 2010     | -             | 0.1081          | 0.6215                        |
| 18.3636     | 2020     | -             | 0.1081          | 0.6206                        |
| 18.4545     | 2030     | -             | 0.1073          | 0.6229                        |
| 18.5455     | 2040     | -             | 0.1069          | 0.6221                        |
| 18.6364     | 2050     | 0.0669        | 0.1070          | 0.6233                        |
| 18.7273     | 2060     | -             | 0.1062          | 0.6233                        |
| 18.8182     | 2070     | -             | 0.1051          | 0.6232                        |
| 18.9091     | 2080     | -             | 0.1038          | 0.6211                        |
| 19.0        | 2090     | -             | 0.1028          | 0.6210                        |
| 19.0909     | 2100     | 0.0638        | 0.1015          | 0.6214                        |
| 19.1818     | 2110     | -             | 0.1021          | 0.6208                        |
| 19.2727     | 2120     | -             | 0.1029          | 0.6205                        |
| 19.3636     | 2130     | -             | 0.1033          | 0.6205                        |
| 19.4545     | 2140     | -             | 0.1044          | 0.6206                        |
| 19.5455     | 2150     | 0.0805        | 0.1030          | 0.6187                        |
| 19.6364     | 2160     | -             | 0.1029          | 0.6199                        |
| 19.7273     | 2170     | -             | 0.1041          | 0.6214                        |
| 19.8182     | 2180     | -             | 0.1050          | 0.6211                        |
| 19.9091     | 2190     | -             | 0.1040          | 0.6207                        |
| 20.0        | 2200     | 0.0932        | 0.1028          | 0.6201                        |
| 20.0909     | 2210     | -             | 0.1019          | 0.6212                        |
| 20.1818     | 2220     | -             | 0.1030          | 0.6202                        |
| 20.2727     | 2230     | -             | 0.1034          | 0.6212                        |
| 20.3636     | 2240     | -             | 0.1029          | 0.6224                        |
| 20.4545     | 2250     | 0.0655        | 0.1034          | 0.6203                        |
| 20.5455     | 2260     | -             | 0.1030          | 0.6229                        |
| 20.6364     | 2270     | -             | 0.1023          | 0.6193                        |
| 20.7273     | 2280     | -             | 0.1022          | 0.6185                        |
| 20.8182     | 2290     | -             | 0.1017          | 0.6189                        |
| 20.9091     | 2300     | 0.0879        | 0.1011          | 0.6178                        |
| 21.0        | 2310     | -             | 0.1015          | 0.6175                        |
| 21.0909     | 2320     | -             | 0.1019          | 0.6182                        |
| 21.1818     | 2330     | -             | 0.1013          | 0.6198                        |
| 21.2727     | 2340     | -             | 0.1014          | 0.6187                        |
| 21.3636     | 2350     | 0.074         | 0.1022          | 0.6205                        |
| 21.4545     | 2360     | -             | 0.1038          | 0.6213                        |
| 21.5455     | 2370     | -             | 0.1043          | 0.6236                        |
| 21.6364     | 2380     | -             | 0.1044          | 0.6231                        |
| 21.7273     | 2390     | -             | 0.1045          | 0.6221                        |
| 21.8182     | 2400     | 0.0768        | 0.1050          | 0.6224                        |
| 21.9091     | 2410     | -             | 0.1054          | 0.6222                        |
| 22.0        | 2420     | -             | 0.1052          | 0.6214                        |
| 22.0909     | 2430     | -             | 0.1051          | 0.6186                        |
| 22.1818     | 2440     | -             | 0.1055          | 0.6193                        |
| 22.2727     | 2450     | 0.0741        | 0.1055          | 0.6205                        |
| 22.3636     | 2460     | -             | 0.1053          | 0.6208                        |
| 22.4545     | 2470     | -             | 0.1052          | 0.6224                        |
| 22.5455     | 2480     | -             | 0.1037          | 0.6191                        |
| 22.6364     | 2490     | -             | 0.1032          | 0.6189                        |
| 22.7273     | 2500     | 0.0669        | 0.1034          | 0.6189                        |
| 22.8182     | 2510     | -             | 0.1037          | 0.6224                        |
| 22.9091     | 2520     | -             | 0.1038          | 0.6226                        |
| 23.0        | 2530     | -             | 0.1035          | 0.6203                        |
| 23.0909     | 2540     | -             | 0.1030          | 0.6198                        |
| 23.1818     | 2550     | 0.0762        | 0.1029          | 0.6201                        |
| 23.2727     | 2560     | -             | 0.1025          | 0.6195                        |
| 23.3636     | 2570     | -             | 0.1024          | 0.6215                        |
| 23.4545     | 2580     | -             | 0.1028          | 0.6224                        |
| 23.5455     | 2590     | -             | 0.1036          | 0.6232                        |
| 23.6364     | 2600     | 0.0815        | 0.1037          | 0.6227                        |
| 23.7273     | 2610     | -             | 0.1039          | 0.6227                        |
| 23.8182     | 2620     | -             | 0.1036          | 0.6211                        |
| 23.9091     | 2630     | -             | 0.1034          | 0.6192                        |
| 24.0        | 2640     | -             | 0.1033          | 0.6193                        |
| 24.0909     | 2650     | 0.0661        | 0.1033          | 0.6178                        |
| 24.1818     | 2660     | -             | 0.1027          | 0.6174                        |
| 24.2727     | 2670     | -             | 0.1024          | 0.6198                        |
| 24.3636     | 2680     | -             | 0.1025          | 0.6184                        |
| 24.4545     | 2690     | -             | 0.1020          | 0.6181                        |
| 24.5455     | 2700     | 0.0679        | 0.1020          | 0.6194                        |
| 24.6364     | 2710     | -             | 0.1020          | 0.6185                        |
| 24.7273     | 2720     | -             | 0.1027          | 0.6196                        |
| 24.8182     | 2730     | -             | 0.1027          | 0.6191                        |
| 24.9091     | 2740     | -             | 0.1030          | 0.6196                        |
| 25.0        | 2750     | 0.0713        | 0.1035          | 0.6208                        |
| 25.0909     | 2760     | -             | 0.1042          | 0.6187                        |
| 25.1818     | 2770     | -             | 0.1049          | 0.6181                        |
| 25.2727     | 2780     | -             | 0.1051          | 0.6200                        |
| 25.3636     | 2790     | -             | 0.1051          | 0.6204                        |
| 25.4545     | 2800     | 0.0786        | 0.1048          | 0.6184                        |
| 25.5455     | 2810     | -             | 0.1049          | 0.6198                        |
| 25.6364     | 2820     | -             | 0.1051          | 0.6200                        |
| 25.7273     | 2830     | -             | 0.1051          | 0.6198                        |
| 25.8182     | 2840     | -             | 0.1048          | 0.6190                        |
| 25.9091     | 2850     | 0.0613        | 0.1050          | 0.6196                        |
| 26.0        | 2860     | -             | 0.1050          | 0.6183                        |
| 26.0909     | 2870     | -             | 0.1047          | 0.6198                        |
| 26.1818     | 2880     | -             | 0.1046          | 0.6197                        |
| 26.2727     | 2890     | -             | 0.1045          | 0.6217                        |
| 26.3636     | 2900     | 0.0576        | 0.1045          | 0.6208                        |
| 26.4545     | 2910     | -             | 0.1047          | 0.6192                        |
| 26.5455     | 2920     | -             | 0.1046          | 0.6220                        |
| 26.6364     | 2930     | -             | 0.1042          | 0.6189                        |
| 26.7273     | 2940     | -             | 0.1039          | 0.6204                        |
| 26.8182     | 2950     | 0.066         | 0.1036          | 0.6215                        |
| 26.9091     | 2960     | -             | 0.1032          | 0.6188                        |
| 27.0        | 2970     | -             | 0.1030          | 0.6209                        |
| 27.0909     | 2980     | -             | 0.1027          | 0.6203                        |
| 27.1818     | 2990     | -             | 0.1026          | 0.6215                        |
| 27.2727     | 3000     | 0.0681        | 0.1025          | 0.6212                        |
| 27.3636     | 3010     | -             | 0.1026          | 0.6193                        |
| 27.4545     | 3020     | -             | 0.1027          | 0.6189                        |
| 27.5455     | 3030     | -             | 0.1028          | 0.6195                        |
| 27.6364     | 3040     | -             | 0.1030          | 0.6196                        |
| 27.7273     | 3050     | 0.081         | 0.1031          | 0.6187                        |
| 27.8182     | 3060     | -             | 0.1032          | 0.6181                        |
| 27.9091     | 3070     | -             | 0.1030          | 0.6177                        |
| 28.0        | 3080     | -             | 0.1029          | 0.6202                        |
| 28.0909     | 3090     | -             | 0.1030          | 0.6193                        |
| 28.1818     | 3100     | 0.0443        | 0.1031          | 0.6195                        |
| 28.2727     | 3110     | -             | 0.1031          | 0.6195                        |
| 28.3636     | 3120     | -             | 0.1032          | 0.6177                        |
| 28.4545     | 3130     | -             | 0.1034          | 0.6187                        |
| 28.5455     | 3140     | -             | 0.1035          | 0.6189                        |
| 28.6364     | 3150     | 0.0646        | 0.1036          | 0.6187                        |
| 28.7273     | 3160     | -             | 0.1037          | 0.6199                        |
| 28.8182     | 3170     | -             | 0.1038          | 0.6208                        |
| 28.9091     | 3180     | -             | 0.1038          | 0.6190                        |
| 29.0        | 3190     | -             | 0.1038          | 0.6191                        |
| 29.0909     | 3200     | 0.0692        | 0.1038          | 0.6190                        |
| 29.1818     | 3210     | -             | 0.1038          | 0.6201                        |
| 29.2727     | 3220     | -             | 0.1038          | 0.6194                        |
| 29.3636     | 3230     | -             | 0.1037          | 0.6201                        |
| 29.4545     | 3240     | -             | 0.1037          | 0.6189                        |
| 29.5455     | 3250     | 0.084         | 0.1037          | 0.6194                        |
| 29.6364     | 3260     | -             | 0.1037          | 0.6189                        |
| 29.7273     | 3270     | -             | 0.1038          | 0.6199                        |
| 29.8182     | 3280     | -             | 0.1038          | 0.6194                        |
| 29.9091     | 3290     | -             | 0.1038          | 0.6191                        |
| 30.0        | 3300     | 0.0598        | 0.1038          | 0.6190                        |

* The bold row denotes the saved checkpoint.
</details>

### Framework Versions
- Python: 3.10.12
- Sentence Transformers: 3.3.0
- Transformers: 4.46.2
- PyTorch: 2.5.1+cu121
- Accelerate: 1.1.1
- Datasets: 3.1.0
- Tokenizers: 0.20.3

## Citation

### BibTeX

#### Sentence Transformers
```bibtex
@inproceedings{reimers-2019-sentence-bert,
    title = "Sentence-BERT: Sentence Embeddings using Siamese BERT-Networks",
    author = "Reimers, Nils and Gurevych, Iryna",
    booktitle = "Proceedings of the 2019 Conference on Empirical Methods in Natural Language Processing",
    month = "11",
    year = "2019",
    publisher = "Association for Computational Linguistics",
    url = "https://arxiv.org/abs/1908.10084",
}
```

#### GISTEmbedLoss
```bibtex
@misc{solatorio2024gistembed,
    title={GISTEmbed: Guided In-sample Selection of Training Negatives for Text Embedding Fine-tuning},
    author={Aivin V. Solatorio},
    year={2024},
    eprint={2402.16829},
    archivePrefix={arXiv},
    primaryClass={cs.LG}
}
```

<!--
## Glossary

*Clearly define terms in order to be accessible across audiences.*
-->

<!--
## Model Card Authors

*Lists the people who create the model card, providing recognition and accountability for the detailed work that goes into its construction.*
-->

<!--
## Model Card Contact

*Provides a way for people who have updates to the Model Card, suggestions, or questions, to contact the Model Card authors.*
-->