metadata
license: creativeml-openrail-m
base_model: black-forest-labs/FLUX.1-dev
tags:
- stable-diffusion
- stable-diffusion-diffusers
- text-to-image
- diffusers
- simpletuner
- lora
- template:sd-lora
inference: true
widget:
- text: unconditional (blank prompt)
parameters:
negative_prompt: ''''
output:
url: ./assets/image_0_0.png
- text: >-
african waitress holding beers in both hands, looking straight into
camera, wearing black sandals, in a bar , dressed in traditional Bavarian
or Alpine attire, which consists of a white lace blouse under a dark green
dirndl dress. The dress is cinched at the waist with a belt that has an
ornate metal clasp, half sleeves dress
parameters:
negative_prompt: ''''
output:
url: ./assets/image_1_0.png
dirndlletz_v7
This is a LoRA derived from black-forest-labs/FLUX.1-dev.
The main validation prompt used during training was:
african waitress holding beers in both hands, looking straight into camera, wearing black sandals, in a bar , dressed in traditional Bavarian or Alpine attire, which consists of a white lace blouse under a dark green dirndl dress. The dress is cinched at the waist with a belt that has an ornate metal clasp, half sleeves dress
Validation settings
- CFG:
3.5
- CFG Rescale:
0.0
- Steps:
15
- Sampler:
None
- Seed:
42
- Resolution:
1024
Note: The validation settings are not necessarily the same as the training settings.
You can find some example images in the following gallery:
The text encoder was not trained. You may reuse the base model text encoder for inference.
Training settings
- Training epochs: 999
- Training steps: 1000
- Learning rate: 0.0001
- Effective batch size: 4
- Micro-batch size: 4
- Gradient accumulation steps: 1
- Number of GPUs: 1
- Prediction type: flow-matching
- Rescaled betas zero SNR: False
- Optimizer: AdamW, stochastic bf16
- Precision: Pure BF16
- Quantised: No
- Xformers: Not used
- LoRA Rank: 32
- LoRA Alpha: None
- LoRA Dropout: 0.1
- LoRA initialisation style: default
Datasets
dirndlletz_v7
- Repeats: 0
- Total number of images: 4
- Total number of aspect buckets: 1
- Resolution: 1.048576 megapixels
- Cropped: True
- Crop style: center
- Crop aspect: square
Inference
import torch
from diffusers import DiffusionPipeline
model_id = 'black-forest-labs/FLUX.1-dev'
adapter_id = 'histin116/dirndlletz_v7'
pipeline = DiffusionPipeline.from_pretrained(model_id)
pipeline.load_lora_weights(adapter_id)
prompt = "african waitress holding beers in both hands, looking straight into camera, wearing black sandals, in a bar , dressed in traditional Bavarian or Alpine attire, which consists of a white lace blouse under a dark green dirndl dress. The dress is cinched at the waist with a belt that has an ornate metal clasp, half sleeves dress"
pipeline.to('cuda' if torch.cuda.is_available() else 'mps' if torch.backends.mps.is_available() else 'cpu')
image = pipeline(
prompt=prompt,
num_inference_steps=15,
generator=torch.Generator(device='cuda' if torch.cuda.is_available() else 'mps' if torch.backends.mps.is_available() else 'cpu').manual_seed(1641421826),
width=1024,
height=1024,
guidance_scale=3.5,
).images[0]
image.save("output.png", format="PNG")