metadata
license: apache-2.0
base_model: facebook/deit-base-patch16-224
tags:
- generated_from_trainer
datasets:
- imagefolder
metrics:
- accuracy
model-index:
- name: hushem_1x_deit_base_adamax_00001_fold1
results:
- task:
name: Image Classification
type: image-classification
dataset:
name: imagefolder
type: imagefolder
config: default
split: test
args: default
metrics:
- name: Accuracy
type: accuracy
value: 0.6
hushem_1x_deit_base_adamax_00001_fold1
This model is a fine-tuned version of facebook/deit-base-patch16-224 on the imagefolder dataset. It achieves the following results on the evaluation set:
- Loss: 1.0627
- Accuracy: 0.6
Model description
More information needed
Intended uses & limitations
More information needed
Training and evaluation data
More information needed
Training procedure
Training hyperparameters
The following hyperparameters were used during training:
- learning_rate: 1e-05
- train_batch_size: 32
- eval_batch_size: 32
- seed: 42
- optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08
- lr_scheduler_type: linear
- lr_scheduler_warmup_ratio: 0.1
- num_epochs: 50
Training results
Training Loss | Epoch | Step | Validation Loss | Accuracy |
---|---|---|---|---|
No log | 1.0 | 6 | 1.3659 | 0.3111 |
1.3159 | 2.0 | 12 | 1.3205 | 0.3556 |
1.3159 | 3.0 | 18 | 1.2809 | 0.4667 |
1.085 | 4.0 | 24 | 1.2473 | 0.4222 |
0.9044 | 5.0 | 30 | 1.2084 | 0.4444 |
0.9044 | 6.0 | 36 | 1.1791 | 0.4667 |
0.7189 | 7.0 | 42 | 1.1564 | 0.4889 |
0.7189 | 8.0 | 48 | 1.1293 | 0.5333 |
0.581 | 9.0 | 54 | 1.1065 | 0.5333 |
0.4841 | 10.0 | 60 | 1.0861 | 0.5111 |
0.4841 | 11.0 | 66 | 1.0742 | 0.4889 |
0.3956 | 12.0 | 72 | 1.0532 | 0.5333 |
0.3956 | 13.0 | 78 | 1.0465 | 0.5333 |
0.3295 | 14.0 | 84 | 1.0354 | 0.5556 |
0.2581 | 15.0 | 90 | 1.0353 | 0.5333 |
0.2581 | 16.0 | 96 | 1.0286 | 0.5111 |
0.2137 | 17.0 | 102 | 1.0149 | 0.5333 |
0.2137 | 18.0 | 108 | 1.0065 | 0.6 |
0.1577 | 19.0 | 114 | 1.0262 | 0.5556 |
0.1394 | 20.0 | 120 | 1.0304 | 0.5556 |
0.1394 | 21.0 | 126 | 1.0253 | 0.5556 |
0.1165 | 22.0 | 132 | 1.0218 | 0.6 |
0.1165 | 23.0 | 138 | 1.0233 | 0.6 |
0.0915 | 24.0 | 144 | 1.0232 | 0.6 |
0.0772 | 25.0 | 150 | 1.0205 | 0.6 |
0.0772 | 26.0 | 156 | 1.0346 | 0.6 |
0.0656 | 27.0 | 162 | 1.0276 | 0.6 |
0.0656 | 28.0 | 168 | 1.0281 | 0.6 |
0.0525 | 29.0 | 174 | 1.0381 | 0.6 |
0.0442 | 30.0 | 180 | 1.0380 | 0.6 |
0.0442 | 31.0 | 186 | 1.0415 | 0.6 |
0.0405 | 32.0 | 192 | 1.0435 | 0.6 |
0.0405 | 33.0 | 198 | 1.0498 | 0.6 |
0.0407 | 34.0 | 204 | 1.0508 | 0.6 |
0.0336 | 35.0 | 210 | 1.0488 | 0.6 |
0.0336 | 36.0 | 216 | 1.0496 | 0.6 |
0.0325 | 37.0 | 222 | 1.0547 | 0.6 |
0.0325 | 38.0 | 228 | 1.0616 | 0.6 |
0.0286 | 39.0 | 234 | 1.0647 | 0.6 |
0.0307 | 40.0 | 240 | 1.0644 | 0.6 |
0.0307 | 41.0 | 246 | 1.0630 | 0.6 |
0.0285 | 42.0 | 252 | 1.0627 | 0.6 |
0.0285 | 43.0 | 258 | 1.0627 | 0.6 |
0.0286 | 44.0 | 264 | 1.0627 | 0.6 |
0.0294 | 45.0 | 270 | 1.0627 | 0.6 |
0.0294 | 46.0 | 276 | 1.0627 | 0.6 |
0.0294 | 47.0 | 282 | 1.0627 | 0.6 |
0.0294 | 48.0 | 288 | 1.0627 | 0.6 |
0.0276 | 49.0 | 294 | 1.0627 | 0.6 |
0.0301 | 50.0 | 300 | 1.0627 | 0.6 |
Framework versions
- Transformers 4.35.2
- Pytorch 2.1.0+cu118
- Datasets 2.14.7
- Tokenizers 0.15.0