hkivancoral's picture
End of training
f6ded5a
metadata
license: apache-2.0
base_model: facebook/deit-base-patch16-224
tags:
  - generated_from_trainer
datasets:
  - imagefolder
metrics:
  - accuracy
model-index:
  - name: hushem_1x_deit_base_adamax_00001_fold1
    results:
      - task:
          name: Image Classification
          type: image-classification
        dataset:
          name: imagefolder
          type: imagefolder
          config: default
          split: test
          args: default
        metrics:
          - name: Accuracy
            type: accuracy
            value: 0.6

hushem_1x_deit_base_adamax_00001_fold1

This model is a fine-tuned version of facebook/deit-base-patch16-224 on the imagefolder dataset. It achieves the following results on the evaluation set:

  • Loss: 1.0627
  • Accuracy: 0.6

Model description

More information needed

Intended uses & limitations

More information needed

Training and evaluation data

More information needed

Training procedure

Training hyperparameters

The following hyperparameters were used during training:

  • learning_rate: 1e-05
  • train_batch_size: 32
  • eval_batch_size: 32
  • seed: 42
  • optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08
  • lr_scheduler_type: linear
  • lr_scheduler_warmup_ratio: 0.1
  • num_epochs: 50

Training results

Training Loss Epoch Step Validation Loss Accuracy
No log 1.0 6 1.3659 0.3111
1.3159 2.0 12 1.3205 0.3556
1.3159 3.0 18 1.2809 0.4667
1.085 4.0 24 1.2473 0.4222
0.9044 5.0 30 1.2084 0.4444
0.9044 6.0 36 1.1791 0.4667
0.7189 7.0 42 1.1564 0.4889
0.7189 8.0 48 1.1293 0.5333
0.581 9.0 54 1.1065 0.5333
0.4841 10.0 60 1.0861 0.5111
0.4841 11.0 66 1.0742 0.4889
0.3956 12.0 72 1.0532 0.5333
0.3956 13.0 78 1.0465 0.5333
0.3295 14.0 84 1.0354 0.5556
0.2581 15.0 90 1.0353 0.5333
0.2581 16.0 96 1.0286 0.5111
0.2137 17.0 102 1.0149 0.5333
0.2137 18.0 108 1.0065 0.6
0.1577 19.0 114 1.0262 0.5556
0.1394 20.0 120 1.0304 0.5556
0.1394 21.0 126 1.0253 0.5556
0.1165 22.0 132 1.0218 0.6
0.1165 23.0 138 1.0233 0.6
0.0915 24.0 144 1.0232 0.6
0.0772 25.0 150 1.0205 0.6
0.0772 26.0 156 1.0346 0.6
0.0656 27.0 162 1.0276 0.6
0.0656 28.0 168 1.0281 0.6
0.0525 29.0 174 1.0381 0.6
0.0442 30.0 180 1.0380 0.6
0.0442 31.0 186 1.0415 0.6
0.0405 32.0 192 1.0435 0.6
0.0405 33.0 198 1.0498 0.6
0.0407 34.0 204 1.0508 0.6
0.0336 35.0 210 1.0488 0.6
0.0336 36.0 216 1.0496 0.6
0.0325 37.0 222 1.0547 0.6
0.0325 38.0 228 1.0616 0.6
0.0286 39.0 234 1.0647 0.6
0.0307 40.0 240 1.0644 0.6
0.0307 41.0 246 1.0630 0.6
0.0285 42.0 252 1.0627 0.6
0.0285 43.0 258 1.0627 0.6
0.0286 44.0 264 1.0627 0.6
0.0294 45.0 270 1.0627 0.6
0.0294 46.0 276 1.0627 0.6
0.0294 47.0 282 1.0627 0.6
0.0294 48.0 288 1.0627 0.6
0.0276 49.0 294 1.0627 0.6
0.0301 50.0 300 1.0627 0.6

Framework versions

  • Transformers 4.35.2
  • Pytorch 2.1.0+cu118
  • Datasets 2.14.7
  • Tokenizers 0.15.0