hkivancoral's picture
End of training
113ffce
metadata
license: apache-2.0
base_model: facebook/deit-base-patch16-224
tags:
  - generated_from_trainer
datasets:
  - imagefolder
metrics:
  - accuracy
model-index:
  - name: hushem_1x_deit_base_adamax_00001_fold4
    results:
      - task:
          name: Image Classification
          type: image-classification
        dataset:
          name: imagefolder
          type: imagefolder
          config: default
          split: test
          args: default
        metrics:
          - name: Accuracy
            type: accuracy
            value: 0.7619047619047619

hushem_1x_deit_base_adamax_00001_fold4

This model is a fine-tuned version of facebook/deit-base-patch16-224 on the imagefolder dataset. It achieves the following results on the evaluation set:

  • Loss: 0.5330
  • Accuracy: 0.7619

Model description

More information needed

Intended uses & limitations

More information needed

Training and evaluation data

More information needed

Training procedure

Training hyperparameters

The following hyperparameters were used during training:

  • learning_rate: 1e-05
  • train_batch_size: 32
  • eval_batch_size: 32
  • seed: 42
  • optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08
  • lr_scheduler_type: linear
  • lr_scheduler_warmup_ratio: 0.1
  • num_epochs: 50

Training results

Training Loss Epoch Step Validation Loss Accuracy
No log 1.0 6 1.3484 0.2857
1.3393 2.0 12 1.3138 0.4524
1.3393 3.0 18 1.2772 0.4048
1.1604 4.0 24 1.2261 0.4524
1.014 5.0 30 1.1685 0.4762
1.014 6.0 36 1.1130 0.5476
0.8569 7.0 42 1.0641 0.5476
0.8569 8.0 48 1.0213 0.5476
0.7145 9.0 54 0.9685 0.5714
0.5812 10.0 60 0.9109 0.6190
0.5812 11.0 66 0.8739 0.6905
0.4645 12.0 72 0.8376 0.6667
0.4645 13.0 78 0.8046 0.6667
0.3784 14.0 84 0.7821 0.6667
0.308 15.0 90 0.7516 0.6905
0.308 16.0 96 0.7309 0.7143
0.2446 17.0 102 0.7113 0.7381
0.2446 18.0 108 0.6911 0.7143
0.2032 19.0 114 0.6782 0.6905
0.1713 20.0 120 0.6649 0.7381
0.1713 21.0 126 0.6459 0.7381
0.1338 22.0 132 0.6300 0.7143
0.1338 23.0 138 0.6291 0.7619
0.113 24.0 144 0.6105 0.8095
0.0989 25.0 150 0.5999 0.7619
0.0989 26.0 156 0.5962 0.7857
0.0793 27.0 162 0.5828 0.7619
0.0793 28.0 168 0.5775 0.7857
0.0704 29.0 174 0.5718 0.7857
0.0586 30.0 180 0.5598 0.7857
0.0586 31.0 186 0.5576 0.7857
0.0498 32.0 192 0.5530 0.7857
0.0498 33.0 198 0.5470 0.7857
0.0487 34.0 204 0.5432 0.7857
0.0426 35.0 210 0.5430 0.7619
0.0426 36.0 216 0.5406 0.7619
0.0394 37.0 222 0.5370 0.7619
0.0394 38.0 228 0.5337 0.7619
0.039 39.0 234 0.5328 0.7619
0.0365 40.0 240 0.5330 0.7619
0.0365 41.0 246 0.5331 0.7619
0.0366 42.0 252 0.5330 0.7619
0.0366 43.0 258 0.5330 0.7619
0.0347 44.0 264 0.5330 0.7619
0.0374 45.0 270 0.5330 0.7619
0.0374 46.0 276 0.5330 0.7619
0.0363 47.0 282 0.5330 0.7619
0.0363 48.0 288 0.5330 0.7619
0.0346 49.0 294 0.5330 0.7619
0.0366 50.0 300 0.5330 0.7619

Framework versions

  • Transformers 4.35.2
  • Pytorch 2.1.0+cu118
  • Datasets 2.14.7
  • Tokenizers 0.15.0