metadata
license: apache-2.0
base_model: facebook/deit-base-patch16-224
tags:
- generated_from_trainer
datasets:
- imagefolder
metrics:
- accuracy
model-index:
- name: hushem_1x_deit_base_adamax_00001_fold4
results:
- task:
name: Image Classification
type: image-classification
dataset:
name: imagefolder
type: imagefolder
config: default
split: test
args: default
metrics:
- name: Accuracy
type: accuracy
value: 0.7619047619047619
hushem_1x_deit_base_adamax_00001_fold4
This model is a fine-tuned version of facebook/deit-base-patch16-224 on the imagefolder dataset. It achieves the following results on the evaluation set:
- Loss: 0.5330
- Accuracy: 0.7619
Model description
More information needed
Intended uses & limitations
More information needed
Training and evaluation data
More information needed
Training procedure
Training hyperparameters
The following hyperparameters were used during training:
- learning_rate: 1e-05
- train_batch_size: 32
- eval_batch_size: 32
- seed: 42
- optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08
- lr_scheduler_type: linear
- lr_scheduler_warmup_ratio: 0.1
- num_epochs: 50
Training results
Training Loss | Epoch | Step | Validation Loss | Accuracy |
---|---|---|---|---|
No log | 1.0 | 6 | 1.3484 | 0.2857 |
1.3393 | 2.0 | 12 | 1.3138 | 0.4524 |
1.3393 | 3.0 | 18 | 1.2772 | 0.4048 |
1.1604 | 4.0 | 24 | 1.2261 | 0.4524 |
1.014 | 5.0 | 30 | 1.1685 | 0.4762 |
1.014 | 6.0 | 36 | 1.1130 | 0.5476 |
0.8569 | 7.0 | 42 | 1.0641 | 0.5476 |
0.8569 | 8.0 | 48 | 1.0213 | 0.5476 |
0.7145 | 9.0 | 54 | 0.9685 | 0.5714 |
0.5812 | 10.0 | 60 | 0.9109 | 0.6190 |
0.5812 | 11.0 | 66 | 0.8739 | 0.6905 |
0.4645 | 12.0 | 72 | 0.8376 | 0.6667 |
0.4645 | 13.0 | 78 | 0.8046 | 0.6667 |
0.3784 | 14.0 | 84 | 0.7821 | 0.6667 |
0.308 | 15.0 | 90 | 0.7516 | 0.6905 |
0.308 | 16.0 | 96 | 0.7309 | 0.7143 |
0.2446 | 17.0 | 102 | 0.7113 | 0.7381 |
0.2446 | 18.0 | 108 | 0.6911 | 0.7143 |
0.2032 | 19.0 | 114 | 0.6782 | 0.6905 |
0.1713 | 20.0 | 120 | 0.6649 | 0.7381 |
0.1713 | 21.0 | 126 | 0.6459 | 0.7381 |
0.1338 | 22.0 | 132 | 0.6300 | 0.7143 |
0.1338 | 23.0 | 138 | 0.6291 | 0.7619 |
0.113 | 24.0 | 144 | 0.6105 | 0.8095 |
0.0989 | 25.0 | 150 | 0.5999 | 0.7619 |
0.0989 | 26.0 | 156 | 0.5962 | 0.7857 |
0.0793 | 27.0 | 162 | 0.5828 | 0.7619 |
0.0793 | 28.0 | 168 | 0.5775 | 0.7857 |
0.0704 | 29.0 | 174 | 0.5718 | 0.7857 |
0.0586 | 30.0 | 180 | 0.5598 | 0.7857 |
0.0586 | 31.0 | 186 | 0.5576 | 0.7857 |
0.0498 | 32.0 | 192 | 0.5530 | 0.7857 |
0.0498 | 33.0 | 198 | 0.5470 | 0.7857 |
0.0487 | 34.0 | 204 | 0.5432 | 0.7857 |
0.0426 | 35.0 | 210 | 0.5430 | 0.7619 |
0.0426 | 36.0 | 216 | 0.5406 | 0.7619 |
0.0394 | 37.0 | 222 | 0.5370 | 0.7619 |
0.0394 | 38.0 | 228 | 0.5337 | 0.7619 |
0.039 | 39.0 | 234 | 0.5328 | 0.7619 |
0.0365 | 40.0 | 240 | 0.5330 | 0.7619 |
0.0365 | 41.0 | 246 | 0.5331 | 0.7619 |
0.0366 | 42.0 | 252 | 0.5330 | 0.7619 |
0.0366 | 43.0 | 258 | 0.5330 | 0.7619 |
0.0347 | 44.0 | 264 | 0.5330 | 0.7619 |
0.0374 | 45.0 | 270 | 0.5330 | 0.7619 |
0.0374 | 46.0 | 276 | 0.5330 | 0.7619 |
0.0363 | 47.0 | 282 | 0.5330 | 0.7619 |
0.0363 | 48.0 | 288 | 0.5330 | 0.7619 |
0.0346 | 49.0 | 294 | 0.5330 | 0.7619 |
0.0366 | 50.0 | 300 | 0.5330 | 0.7619 |
Framework versions
- Transformers 4.35.2
- Pytorch 2.1.0+cu118
- Datasets 2.14.7
- Tokenizers 0.15.0