hkivancoral's picture
End of training
c55f1fa
metadata
license: apache-2.0
base_model: facebook/deit-base-patch16-224
tags:
  - generated_from_trainer
datasets:
  - imagefolder
metrics:
  - accuracy
model-index:
  - name: hushem_1x_deit_base_rms_00001_fold4
    results:
      - task:
          name: Image Classification
          type: image-classification
        dataset:
          name: imagefolder
          type: imagefolder
          config: default
          split: test
          args: default
        metrics:
          - name: Accuracy
            type: accuracy
            value: 0.9523809523809523

hushem_1x_deit_base_rms_00001_fold4

This model is a fine-tuned version of facebook/deit-base-patch16-224 on the imagefolder dataset. It achieves the following results on the evaluation set:

  • Loss: 0.1646
  • Accuracy: 0.9524

Model description

More information needed

Intended uses & limitations

More information needed

Training and evaluation data

More information needed

Training procedure

Training hyperparameters

The following hyperparameters were used during training:

  • learning_rate: 1e-05
  • train_batch_size: 32
  • eval_batch_size: 32
  • seed: 42
  • optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08
  • lr_scheduler_type: linear
  • lr_scheduler_warmup_ratio: 0.1
  • num_epochs: 50

Training results

Training Loss Epoch Step Validation Loss Accuracy
No log 1.0 6 1.2420 0.5476
1.2334 2.0 12 1.0719 0.4762
1.2334 3.0 18 0.5624 0.8333
0.5394 4.0 24 0.4815 0.8333
0.1826 5.0 30 0.4341 0.8333
0.1826 6.0 36 0.3198 0.9286
0.0424 7.0 42 0.2589 0.9286
0.0424 8.0 48 0.2146 0.9286
0.0113 9.0 54 0.1989 0.9286
0.0057 10.0 60 0.1966 0.9286
0.0057 11.0 66 0.1888 0.9286
0.004 12.0 72 0.1874 0.9286
0.004 13.0 78 0.1826 0.9286
0.0032 14.0 84 0.1800 0.9524
0.0027 15.0 90 0.1793 0.9524
0.0027 16.0 96 0.1777 0.9524
0.0022 17.0 102 0.1759 0.9524
0.0022 18.0 108 0.1747 0.9524
0.002 19.0 114 0.1746 0.9524
0.0018 20.0 120 0.1735 0.9524
0.0018 21.0 126 0.1728 0.9524
0.0015 22.0 132 0.1728 0.9524
0.0015 23.0 138 0.1714 0.9524
0.0014 24.0 144 0.1703 0.9524
0.0013 25.0 150 0.1698 0.9524
0.0013 26.0 156 0.1687 0.9524
0.0012 27.0 162 0.1685 0.9524
0.0012 28.0 168 0.1678 0.9524
0.0011 29.0 174 0.1675 0.9524
0.001 30.0 180 0.1677 0.9524
0.001 31.0 186 0.1670 0.9524
0.001 32.0 192 0.1667 0.9524
0.001 33.0 198 0.1661 0.9524
0.001 34.0 204 0.1660 0.9524
0.0009 35.0 210 0.1655 0.9524
0.0009 36.0 216 0.1652 0.9524
0.0009 37.0 222 0.1650 0.9524
0.0009 38.0 228 0.1648 0.9524
0.0009 39.0 234 0.1647 0.9524
0.0009 40.0 240 0.1647 0.9524
0.0009 41.0 246 0.1646 0.9524
0.0009 42.0 252 0.1646 0.9524
0.0009 43.0 258 0.1646 0.9524
0.0008 44.0 264 0.1646 0.9524
0.0009 45.0 270 0.1646 0.9524
0.0009 46.0 276 0.1646 0.9524
0.0008 47.0 282 0.1646 0.9524
0.0008 48.0 288 0.1646 0.9524
0.0008 49.0 294 0.1646 0.9524
0.0009 50.0 300 0.1646 0.9524

Framework versions

  • Transformers 4.35.2
  • Pytorch 2.1.0+cu118
  • Datasets 2.15.0
  • Tokenizers 0.15.0