hkivancoral's picture
End of training
b081442
|
raw
history blame
4.82 kB
metadata
license: apache-2.0
base_model: facebook/deit-base-patch16-224
tags:
  - generated_from_trainer
datasets:
  - imagefolder
metrics:
  - accuracy
model-index:
  - name: hushem_1x_deit_base_rms_00001_fold5
    results:
      - task:
          name: Image Classification
          type: image-classification
        dataset:
          name: imagefolder
          type: imagefolder
          config: default
          split: test
          args: default
        metrics:
          - name: Accuracy
            type: accuracy
            value: 0.8048780487804879

hushem_1x_deit_base_rms_00001_fold5

This model is a fine-tuned version of facebook/deit-base-patch16-224 on the imagefolder dataset. It achieves the following results on the evaluation set:

  • Loss: 0.6686
  • Accuracy: 0.8049

Model description

More information needed

Intended uses & limitations

More information needed

Training and evaluation data

More information needed

Training procedure

Training hyperparameters

The following hyperparameters were used during training:

  • learning_rate: 1e-05
  • train_batch_size: 32
  • eval_batch_size: 32
  • seed: 42
  • optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08
  • lr_scheduler_type: linear
  • lr_scheduler_warmup_ratio: 0.1
  • num_epochs: 50

Training results

Training Loss Epoch Step Validation Loss Accuracy
No log 1.0 6 1.1610 0.4878
1.1582 2.0 12 0.8046 0.6585
1.1582 3.0 18 0.6473 0.7805
0.4382 4.0 24 0.6375 0.7073
0.1279 5.0 30 0.5568 0.7317
0.1279 6.0 36 0.6762 0.7805
0.0256 7.0 42 0.5322 0.8049
0.0256 8.0 48 0.6244 0.8049
0.0081 9.0 54 0.5937 0.7805
0.0049 10.0 60 0.5932 0.8049
0.0049 11.0 66 0.6107 0.8049
0.0035 12.0 72 0.6136 0.8049
0.0035 13.0 78 0.6118 0.8049
0.0028 14.0 84 0.6111 0.8049
0.0023 15.0 90 0.6113 0.8049
0.0023 16.0 96 0.6216 0.8049
0.0019 17.0 102 0.6208 0.8049
0.0019 18.0 108 0.6301 0.8049
0.0017 19.0 114 0.6331 0.8049
0.0015 20.0 120 0.6358 0.8049
0.0015 21.0 126 0.6382 0.8049
0.0014 22.0 132 0.6393 0.8049
0.0014 23.0 138 0.6427 0.8049
0.0012 24.0 144 0.6480 0.8049
0.0012 25.0 150 0.6496 0.8049
0.0012 26.0 156 0.6549 0.8049
0.0011 27.0 162 0.6526 0.8049
0.0011 28.0 168 0.6563 0.8049
0.001 29.0 174 0.6589 0.8049
0.0009 30.0 180 0.6593 0.8049
0.0009 31.0 186 0.6617 0.8049
0.0009 32.0 192 0.6634 0.8049
0.0009 33.0 198 0.6645 0.8049
0.0009 34.0 204 0.6634 0.8049
0.0008 35.0 210 0.6653 0.8049
0.0008 36.0 216 0.6660 0.8049
0.0008 37.0 222 0.6671 0.8049
0.0008 38.0 228 0.6676 0.8049
0.0008 39.0 234 0.6682 0.8049
0.0008 40.0 240 0.6685 0.8049
0.0008 41.0 246 0.6685 0.8049
0.0008 42.0 252 0.6686 0.8049
0.0008 43.0 258 0.6686 0.8049
0.0007 44.0 264 0.6686 0.8049
0.0008 45.0 270 0.6686 0.8049
0.0008 46.0 276 0.6686 0.8049
0.0008 47.0 282 0.6686 0.8049
0.0008 48.0 288 0.6686 0.8049
0.0008 49.0 294 0.6686 0.8049
0.0008 50.0 300 0.6686 0.8049

Framework versions

  • Transformers 4.35.2
  • Pytorch 2.1.0+cu118
  • Datasets 2.15.0
  • Tokenizers 0.15.0