hkivancoral's picture
End of training
72c93d6
|
raw
history blame
4.81 kB
metadata
license: apache-2.0
base_model: facebook/deit-base-patch16-224
tags:
  - generated_from_trainer
datasets:
  - imagefolder
metrics:
  - accuracy
model-index:
  - name: hushem_1x_deit_base_rms_001_fold5
    results:
      - task:
          name: Image Classification
          type: image-classification
        dataset:
          name: imagefolder
          type: imagefolder
          config: default
          split: test
          args: default
        metrics:
          - name: Accuracy
            type: accuracy
            value: 0.4878048780487805

hushem_1x_deit_base_rms_001_fold5

This model is a fine-tuned version of facebook/deit-base-patch16-224 on the imagefolder dataset. It achieves the following results on the evaluation set:

  • Loss: 1.3674
  • Accuracy: 0.4878

Model description

More information needed

Intended uses & limitations

More information needed

Training and evaluation data

More information needed

Training procedure

Training hyperparameters

The following hyperparameters were used during training:

  • learning_rate: 0.001
  • train_batch_size: 32
  • eval_batch_size: 32
  • seed: 42
  • optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08
  • lr_scheduler_type: linear
  • lr_scheduler_warmup_ratio: 0.1
  • num_epochs: 50

Training results

Training Loss Epoch Step Validation Loss Accuracy
No log 1.0 6 5.8345 0.2683
4.8133 2.0 12 1.9738 0.2439
4.8133 3.0 18 1.6557 0.2439
2.3825 4.0 24 1.4419 0.2439
1.6511 5.0 30 1.5141 0.2439
1.6511 6.0 36 1.7332 0.2683
1.5506 7.0 42 1.4915 0.2439
1.5506 8.0 48 1.4901 0.2683
1.4941 9.0 54 1.4008 0.2683
1.5024 10.0 60 1.4017 0.2439
1.5024 11.0 66 1.4108 0.2683
1.6905 12.0 72 1.4762 0.2439
1.6905 13.0 78 1.4772 0.2439
1.4363 14.0 84 1.3917 0.3659
1.4324 15.0 90 1.3778 0.2439
1.4324 16.0 96 1.4917 0.2439
1.4176 17.0 102 1.8605 0.2439
1.4176 18.0 108 1.2587 0.4634
1.4153 19.0 114 1.3519 0.3171
1.363 20.0 120 1.2976 0.3902
1.363 21.0 126 1.7214 0.3902
1.2297 22.0 132 1.5932 0.3415
1.2297 23.0 138 1.0760 0.5122
1.1323 24.0 144 1.1518 0.4390
1.0463 25.0 150 1.1823 0.4146
1.0463 26.0 156 1.0632 0.4634
1.0497 27.0 162 1.1057 0.5122
1.0497 28.0 168 0.9873 0.4390
0.9597 29.0 174 1.0710 0.5122
1.0006 30.0 180 1.1482 0.4146
1.0006 31.0 186 1.1124 0.4634
0.934 32.0 192 1.1437 0.4146
0.934 33.0 198 1.1241 0.4390
0.8599 34.0 204 1.1438 0.4390
0.852 35.0 210 1.1783 0.4634
0.852 36.0 216 1.2807 0.4878
0.8357 37.0 222 1.2879 0.4878
0.8357 38.0 228 1.3101 0.4390
0.7932 39.0 234 1.2773 0.4878
0.7254 40.0 240 1.3480 0.4878
0.7254 41.0 246 1.3839 0.4878
0.7183 42.0 252 1.3674 0.4878
0.7183 43.0 258 1.3674 0.4878
0.6348 44.0 264 1.3674 0.4878
0.6561 45.0 270 1.3674 0.4878
0.6561 46.0 276 1.3674 0.4878
0.6538 47.0 282 1.3674 0.4878
0.6538 48.0 288 1.3674 0.4878
0.6489 49.0 294 1.3674 0.4878
0.6536 50.0 300 1.3674 0.4878

Framework versions

  • Transformers 4.35.2
  • Pytorch 2.1.0+cu118
  • Datasets 2.14.7
  • Tokenizers 0.15.0