hkivancoral's picture
End of training
bc29897
metadata
license: apache-2.0
base_model: facebook/deit-tiny-patch16-224
tags:
  - generated_from_trainer
datasets:
  - imagefolder
metrics:
  - accuracy
model-index:
  - name: hushem_1x_deit_tiny_adamax_lr0001_fold2
    results:
      - task:
          name: Image Classification
          type: image-classification
        dataset:
          name: imagefolder
          type: imagefolder
          config: default
          split: test
          args: default
        metrics:
          - name: Accuracy
            type: accuracy
            value: 0.4666666666666667

hushem_1x_deit_tiny_adamax_lr0001_fold2

This model is a fine-tuned version of facebook/deit-tiny-patch16-224 on the imagefolder dataset. It achieves the following results on the evaluation set:

  • Loss: 1.9509
  • Accuracy: 0.4667

Model description

More information needed

Intended uses & limitations

More information needed

Training and evaluation data

More information needed

Training procedure

Training hyperparameters

The following hyperparameters were used during training:

  • learning_rate: 0.0001
  • train_batch_size: 32
  • eval_batch_size: 32
  • seed: 42
  • gradient_accumulation_steps: 4
  • total_train_batch_size: 128
  • optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08
  • lr_scheduler_type: linear
  • lr_scheduler_warmup_ratio: 0.1
  • num_epochs: 50

Training results

Training Loss Epoch Step Validation Loss Accuracy
No log 0.67 1 1.8647 0.2444
No log 2.0 3 1.3951 0.2667
No log 2.67 4 1.3922 0.2889
No log 4.0 6 1.4419 0.2889
No log 4.67 7 1.4528 0.2889
No log 6.0 9 1.4637 0.3111
1.1875 6.67 10 1.3956 0.3333
1.1875 8.0 12 1.3768 0.4
1.1875 8.67 13 1.4359 0.3778
1.1875 10.0 15 1.4704 0.4
1.1875 10.67 16 1.4280 0.3778
1.1875 12.0 18 1.3838 0.4667
1.1875 12.67 19 1.4103 0.4444
0.4412 14.0 21 1.5312 0.4222
0.4412 14.67 22 1.6068 0.4444
0.4412 16.0 24 1.5834 0.4222
0.4412 16.67 25 1.5809 0.4222
0.4412 18.0 27 1.5887 0.4444
0.4412 18.67 28 1.6461 0.4222
0.0689 20.0 30 1.7954 0.4222
0.0689 20.67 31 1.8270 0.4444
0.0689 22.0 33 1.8461 0.4667
0.0689 22.67 34 1.8602 0.4667
0.0689 24.0 36 1.8842 0.4444
0.0689 24.67 37 1.8985 0.4444
0.0689 26.0 39 1.9148 0.4444
0.0084 26.67 40 1.9205 0.4222
0.0084 28.0 42 1.9310 0.4444
0.0084 28.67 43 1.9361 0.4444
0.0084 30.0 45 1.9427 0.4444
0.0084 30.67 46 1.9452 0.4667
0.0084 32.0 48 1.9490 0.4667
0.0084 32.67 49 1.9503 0.4667
0.0036 33.33 50 1.9509 0.4667

Framework versions

  • Transformers 4.35.0
  • Pytorch 2.1.0+cu118
  • Datasets 2.14.6
  • Tokenizers 0.14.1