metadata
license: apache-2.0
base_model: facebook/deit-base-patch16-224
tags:
- generated_from_trainer
datasets:
- imagefolder
metrics:
- accuracy
model-index:
- name: hushem_5x_deit_base_rms_0001_fold2
results:
- task:
name: Image Classification
type: image-classification
dataset:
name: imagefolder
type: imagefolder
config: default
split: test
args: default
metrics:
- name: Accuracy
type: accuracy
value: 0.5333333333333333
hushem_5x_deit_base_rms_0001_fold2
This model is a fine-tuned version of facebook/deit-base-patch16-224 on the imagefolder dataset. It achieves the following results on the evaluation set:
- Loss: 5.1764
- Accuracy: 0.5333
Model description
More information needed
Intended uses & limitations
More information needed
Training and evaluation data
More information needed
Training procedure
Training hyperparameters
The following hyperparameters were used during training:
- learning_rate: 0.0001
- train_batch_size: 32
- eval_batch_size: 32
- seed: 42
- optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08
- lr_scheduler_type: linear
- lr_scheduler_warmup_ratio: 0.1
- num_epochs: 50
Training results
Training Loss | Epoch | Step | Validation Loss | Accuracy |
---|---|---|---|---|
1.4732 | 1.0 | 27 | 1.5871 | 0.2667 |
1.4137 | 2.0 | 54 | 1.4271 | 0.2667 |
1.462 | 3.0 | 81 | 1.4098 | 0.2667 |
1.4423 | 4.0 | 108 | 1.4316 | 0.2444 |
1.4677 | 5.0 | 135 | 1.1736 | 0.6 |
1.1753 | 6.0 | 162 | 1.3090 | 0.4889 |
1.0628 | 7.0 | 189 | 1.1008 | 0.4 |
0.8856 | 8.0 | 216 | 1.3194 | 0.4667 |
0.7266 | 9.0 | 243 | 1.5517 | 0.4667 |
0.7206 | 10.0 | 270 | 1.5964 | 0.4222 |
0.6825 | 11.0 | 297 | 1.9511 | 0.5333 |
0.6024 | 12.0 | 324 | 1.1289 | 0.5111 |
0.7093 | 13.0 | 351 | 1.6051 | 0.4667 |
0.5446 | 14.0 | 378 | 1.0604 | 0.5333 |
0.4716 | 15.0 | 405 | 2.6293 | 0.5778 |
0.4728 | 16.0 | 432 | 3.2908 | 0.4889 |
0.5099 | 17.0 | 459 | 2.0246 | 0.5333 |
0.4809 | 18.0 | 486 | 3.4545 | 0.5333 |
0.3484 | 19.0 | 513 | 2.2451 | 0.5111 |
0.352 | 20.0 | 540 | 2.8572 | 0.4889 |
0.3258 | 21.0 | 567 | 3.5970 | 0.5556 |
0.2785 | 22.0 | 594 | 3.6404 | 0.5556 |
0.3005 | 23.0 | 621 | 3.6333 | 0.5111 |
0.2089 | 24.0 | 648 | 4.2561 | 0.5333 |
0.1996 | 25.0 | 675 | 3.8526 | 0.5111 |
0.1044 | 26.0 | 702 | 4.1245 | 0.5333 |
0.2042 | 27.0 | 729 | 3.9154 | 0.5556 |
0.1371 | 28.0 | 756 | 3.3906 | 0.5556 |
0.1014 | 29.0 | 783 | 4.2534 | 0.5556 |
0.0761 | 30.0 | 810 | 3.8328 | 0.5778 |
0.0321 | 31.0 | 837 | 4.5117 | 0.5556 |
0.1194 | 32.0 | 864 | 4.5296 | 0.5333 |
0.0072 | 33.0 | 891 | 4.9299 | 0.5333 |
0.0276 | 34.0 | 918 | 5.0433 | 0.5111 |
0.0121 | 35.0 | 945 | 4.9519 | 0.5333 |
0.0051 | 36.0 | 972 | 4.9546 | 0.5333 |
0.0001 | 37.0 | 999 | 4.9700 | 0.5111 |
0.0001 | 38.0 | 1026 | 4.9962 | 0.5111 |
0.0 | 39.0 | 1053 | 5.0319 | 0.5111 |
0.0 | 40.0 | 1080 | 5.0566 | 0.5111 |
0.0001 | 41.0 | 1107 | 5.0812 | 0.5333 |
0.0 | 42.0 | 1134 | 5.1051 | 0.5333 |
0.0 | 43.0 | 1161 | 5.1228 | 0.5333 |
0.0 | 44.0 | 1188 | 5.1393 | 0.5333 |
0.0 | 45.0 | 1215 | 5.1531 | 0.5333 |
0.0 | 46.0 | 1242 | 5.1647 | 0.5333 |
0.0 | 47.0 | 1269 | 5.1724 | 0.5333 |
0.0 | 48.0 | 1296 | 5.1763 | 0.5333 |
0.0 | 49.0 | 1323 | 5.1764 | 0.5333 |
0.0 | 50.0 | 1350 | 5.1764 | 0.5333 |
Framework versions
- Transformers 4.35.2
- Pytorch 2.1.0+cu118
- Datasets 2.15.0
- Tokenizers 0.15.0