3b / README.md
bunnycore's picture
Adding Evaluation Results (#1)
3e3725c verified
metadata
library_name: transformers
tags:
  - mergekit
  - merge
base_model:
  - Qwen/Qwen2.5-3B-Instruct
  - bunnycore/Qwen-2.5-3b-Rp-lora_model
model-index:
  - name: Qwen2.5-3B-RP-Mix
    results:
      - task:
          type: text-generation
          name: Text Generation
        dataset:
          name: IFEval (0-Shot)
          type: HuggingFaceH4/ifeval
          args:
            num_few_shot: 0
        metrics:
          - type: inst_level_strict_acc and prompt_level_strict_acc
            value: 57.21
            name: strict accuracy
        source:
          url: >-
            https://huggingface.co/spaces/open-llm-leaderboard/open_llm_leaderboard?query=bunnycore/Qwen2.5-3B-RP-Mix
          name: Open LLM Leaderboard
      - task:
          type: text-generation
          name: Text Generation
        dataset:
          name: BBH (3-Shot)
          type: BBH
          args:
            num_few_shot: 3
        metrics:
          - type: acc_norm
            value: 28.31
            name: normalized accuracy
        source:
          url: >-
            https://huggingface.co/spaces/open-llm-leaderboard/open_llm_leaderboard?query=bunnycore/Qwen2.5-3B-RP-Mix
          name: Open LLM Leaderboard
      - task:
          type: text-generation
          name: Text Generation
        dataset:
          name: MATH Lvl 5 (4-Shot)
          type: hendrycks/competition_math
          args:
            num_few_shot: 4
        metrics:
          - type: exact_match
            value: 7.4
            name: exact match
        source:
          url: >-
            https://huggingface.co/spaces/open-llm-leaderboard/open_llm_leaderboard?query=bunnycore/Qwen2.5-3B-RP-Mix
          name: Open LLM Leaderboard
      - task:
          type: text-generation
          name: Text Generation
        dataset:
          name: GPQA (0-shot)
          type: Idavidrein/gpqa
          args:
            num_few_shot: 0
        metrics:
          - type: acc_norm
            value: 3.13
            name: acc_norm
        source:
          url: >-
            https://huggingface.co/spaces/open-llm-leaderboard/open_llm_leaderboard?query=bunnycore/Qwen2.5-3B-RP-Mix
          name: Open LLM Leaderboard
      - task:
          type: text-generation
          name: Text Generation
        dataset:
          name: MuSR (0-shot)
          type: TAUR-Lab/MuSR
          args:
            num_few_shot: 0
        metrics:
          - type: acc_norm
            value: 12.56
            name: acc_norm
        source:
          url: >-
            https://huggingface.co/spaces/open-llm-leaderboard/open_llm_leaderboard?query=bunnycore/Qwen2.5-3B-RP-Mix
          name: Open LLM Leaderboard
      - task:
          type: text-generation
          name: Text Generation
        dataset:
          name: MMLU-PRO (5-shot)
          type: TIGER-Lab/MMLU-Pro
          config: main
          split: test
          args:
            num_few_shot: 5
        metrics:
          - type: acc
            value: 30.31
            name: accuracy
        source:
          url: >-
            https://huggingface.co/spaces/open-llm-leaderboard/open_llm_leaderboard?query=bunnycore/Qwen2.5-3B-RP-Mix
          name: Open LLM Leaderboard

merge

This is a merge of pre-trained language models created using mergekit.

Merge Details

Merge Method

This model was merged using the passthrough merge method using Qwen/Qwen2.5-3B-Instruct + bunnycore/Qwen-2.5-3b-Rp-lora_model as a base.

Models Merged

The following models were included in the merge:

Configuration

The following YAML configuration was used to produce this model:


base_model: Qwen/Qwen2.5-3B-Instruct+bunnycore/Qwen-2.5-3b-Rp-lora_model
dtype: bfloat16
merge_method: passthrough
models:
  - model: Qwen/Qwen2.5-3B-Instruct+bunnycore/Qwen-2.5-3b-Rp-lora_model

Open LLM Leaderboard Evaluation Results

Detailed results can be found here

Metric Value
Avg. 23.15
IFEval (0-Shot) 57.21
BBH (3-Shot) 28.31
MATH Lvl 5 (4-Shot) 7.40
GPQA (0-shot) 3.13
MuSR (0-shot) 12.56
MMLU-PRO (5-shot) 30.31