hmrizal's picture
Update README.md
b243bbe verified
metadata
license: apache-2.0
base_model: google/vit-base-patch16-224-in21k
tags:
  - generated_from_trainer
datasets:
  - imagefolder
  - FastJobs/Visual_Emotional_Analysis
metrics:
  - accuracy
model-index:
  - name: emotion_classification
    results:
      - task:
          name: Image Classification
          type: image-classification
        dataset:
          name: imagefolder
          type: imagefolder
          config: default
          split: train
          args: default
        metrics:
          - name: Accuracy
            type: accuracy
            value: 0.64375

emotion_classification

This model is a fine-tuned version of google/vit-base-patch16-224-in21k on the imagefolder dataset. It achieves the following results on the evaluation set:

  • Loss: 1.2002
  • Accuracy: 0.6438

Model description

More information needed

Intended uses & limitations

More information needed

Training and evaluation data

More information needed

Training procedure

Training hyperparameters

The following hyperparameters were used during training:

  • learning_rate: 5e-05
  • train_batch_size: 16
  • eval_batch_size: 16
  • seed: 42
  • optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08
  • lr_scheduler_type: linear
  • lr_scheduler_warmup_steps: 12
  • num_epochs: 15

Training results

Training Loss Epoch Step Validation Loss Accuracy
No log 1.0 40 1.9756 0.2313
No log 2.0 80 1.6788 0.3937
No log 3.0 120 1.5219 0.5375
No log 4.0 160 1.4542 0.45
No log 5.0 200 1.3923 0.5
No log 6.0 240 1.3595 0.4437
No log 7.0 280 1.3111 0.5125
No log 8.0 320 1.2050 0.5625
No log 9.0 360 1.2387 0.5437
No log 10.0 400 1.2847 0.5437
No log 11.0 440 1.2048 0.5625
No log 12.0 480 1.2270 0.5563
1.0855 13.0 520 1.2058 0.5875
1.0855 14.0 560 1.1999 0.5625
1.0855 15.0 600 1.2032 0.5687

Framework versions

  • Transformers 4.41.1
  • Pytorch 2.1.2
  • Datasets 2.19.1
  • Tokenizers 0.19.1