metadata
library_name: setfit
tags:
- setfit
- sentence-transformers
- text-classification
- generated_from_setfit_trainer
datasets:
- hojzas/proj4-uniq_orig_order-lab1
metrics:
- accuracy
widget:
- text: return list(dict.fromkeys(it))
- text: return [l for i, l in enumerate(it) if i == it.index(l)]
- text: return list(dict.fromkeys(it).keys())
- text: return [value for key, value in enumerate(it) if value not in it[:key]]
- text: |2-
registered = set()
register = registered.add
return [x for x in it if not (x in registered or register(x))]
pipeline_tag: text-classification
inference: true
co2_eq_emissions:
emissions: 0.5122324218344383
source: codecarbon
training_type: fine-tuning
on_cloud: false
cpu_model: Intel(R) Xeon(R) Silver 4314 CPU @ 2.40GHz
ram_total_size: 251.49161911010742
hours_used: 0.002
hardware_used: 4 x NVIDIA RTX A5000
base_model: sentence-transformers/all-mpnet-base-v2
SetFit with sentence-transformers/all-mpnet-base-v2
This is a SetFit model trained on the hojzas/proj4-uniq_orig_order-lab1 dataset that can be used for Text Classification. This SetFit model uses sentence-transformers/all-mpnet-base-v2 as the Sentence Transformer embedding model. A LogisticRegression instance is used for classification.
The model has been trained using an efficient few-shot learning technique that involves:
- Fine-tuning a Sentence Transformer with contrastive learning.
- Training a classification head with features from the fine-tuned Sentence Transformer.
Model Details
Model Description
- Model Type: SetFit
- Sentence Transformer body: sentence-transformers/all-mpnet-base-v2
- Classification head: a LogisticRegression instance
- Maximum Sequence Length: 384 tokens
- Number of Classes: 2 classes
- Training Dataset: hojzas/proj4-uniq_orig_order-lab1
Model Sources
- Repository: SetFit on GitHub
- Paper: Efficient Few-Shot Learning Without Prompts
- Blogpost: SetFit: Efficient Few-Shot Learning Without Prompts
Model Labels
Label | Examples |
---|---|
0 |
|
1 |
|
Uses
Direct Use for Inference
First install the SetFit library:
pip install setfit
Then you can load this model and run inference.
from setfit import SetFitModel
# Download from the 🤗 Hub
model = SetFitModel.from_pretrained("hojzas/proj4-uniq_orig_order-lab1")
# Run inference
preds = model("return list(dict.fromkeys(it))")
Training Details
Training Set Metrics
Training set | Min | Median | Max |
---|---|---|---|
Word count | 2 | 20.9524 | 111 |
Label | Training Sample Count |
---|---|
0 | 13 |
1 | 8 |
Training Hyperparameters
- batch_size: (16, 16)
- num_epochs: (1, 1)
- max_steps: -1
- sampling_strategy: oversampling
- num_iterations: 20
- body_learning_rate: (2e-05, 2e-05)
- head_learning_rate: 2e-05
- loss: CosineSimilarityLoss
- distance_metric: cosine_distance
- margin: 0.25
- end_to_end: False
- use_amp: False
- warmup_proportion: 0.1
- seed: 42
- eval_max_steps: -1
- load_best_model_at_end: False
Training Results
Epoch | Step | Training Loss | Validation Loss |
---|---|---|---|
0.0189 | 1 | 0.1783 | - |
0.9434 | 50 | 0.0013 | - |
Environmental Impact
Carbon emissions were measured using CodeCarbon.
- Carbon Emitted: 0.001 kg of CO2
- Hours Used: 0.002 hours
Training Hardware
- On Cloud: No
- GPU Model: 4 x NVIDIA RTX A5000
- CPU Model: Intel(R) Xeon(R) Silver 4314 CPU @ 2.40GHz
- RAM Size: 251.49 GB
Framework Versions
- Python: 3.10.12
- SetFit: 1.0.3
- Sentence Transformers: 2.2.2
- Transformers: 4.36.1
- PyTorch: 2.1.2+cu121
- Datasets: 2.14.7
- Tokenizers: 0.15.1
Citation
BibTeX
@article{https://doi.org/10.48550/arxiv.2209.11055,
doi = {10.48550/ARXIV.2209.11055},
url = {https://arxiv.org/abs/2209.11055},
author = {Tunstall, Lewis and Reimers, Nils and Jo, Unso Eun Seo and Bates, Luke and Korat, Daniel and Wasserblat, Moshe and Pereg, Oren},
keywords = {Computation and Language (cs.CL), FOS: Computer and information sciences, FOS: Computer and information sciences},
title = {Efficient Few-Shot Learning Without Prompts},
publisher = {arXiv},
year = {2022},
copyright = {Creative Commons Attribution 4.0 International}
}