|
--- |
|
library_name: setfit |
|
tags: |
|
- setfit |
|
- sentence-transformers |
|
- text-classification |
|
- generated_from_setfit_trainer |
|
datasets: |
|
- hojzas/proj8-lab2 |
|
metrics: |
|
- accuracy |
|
widget: |
|
- text: 'def first_with_given_key(iterable, key=lambda x: x):\n keys_used = {}\n for |
|
item in iterable:\n rp = repr(key(item))\n if rp not in keys_used.keys():\n keys_used[rp] |
|
= repr(item)\n yield item' |
|
- text: 'def first_with_given_key(iterable, key=lambda x: x):\n keys=[]\n for |
|
i in iterable:\n if key(i) not in keys:\n yield i\n keys.append(key(i))' |
|
- text: 'def first_with_given_key(lst, key = lambda x: x):\n res = set()\n for |
|
i in lst:\n if repr(key(i)) not in res:\n res.add(repr(key(i)))\n yield |
|
i' |
|
- text: def first_with_given_key(iterable, key=repr):\n used_keys = dict()\n get_key |
|
= return_key(key)\n for index in iterable:\n index_key = get_key(index)\n if |
|
index_key in used_keys.keys():\n continue\n try:\n used_keys[hash(index_key)] |
|
= repr(index)\n except TypeError:\n used_keys[repr(index_key)] |
|
= repr(index)\n yield index |
|
- text: 'def first_with_given_key(the_iterable, key=lambda x: x):\n temp_keys=[]\n for |
|
i in range(len(the_iterable)):\n if (key(the_iterable[i]) not in temp_keys):\n temp_keys.append(key(the_iterable[i]))\n yield |
|
the_iterable[i]\n del temp_keys' |
|
pipeline_tag: text-classification |
|
inference: true |
|
co2_eq_emissions: |
|
emissions: 2.099245090500422 |
|
source: codecarbon |
|
training_type: fine-tuning |
|
on_cloud: false |
|
cpu_model: Intel(R) Xeon(R) Silver 4314 CPU @ 2.40GHz |
|
ram_total_size: 251.49161911010742 |
|
hours_used: 0.006 |
|
hardware_used: 4 x NVIDIA RTX A5000 |
|
base_model: sentence-transformers/all-mpnet-base-v2 |
|
--- |
|
|
|
# SetFit with sentence-transformers/all-mpnet-base-v2 |
|
|
|
This is a [SetFit](https://github.com/huggingface/setfit) model trained on the [hojzas/proj8-lab2](https://huggingface.co/datasets/hojzas/proj8-lab2) dataset that can be used for Text Classification. This SetFit model uses [sentence-transformers/all-mpnet-base-v2](https://huggingface.co/sentence-transformers/all-mpnet-base-v2) as the Sentence Transformer embedding model. A [LogisticRegression](https://scikit-learn.org/stable/modules/generated/sklearn.linear_model.LogisticRegression.html) instance is used for classification. |
|
|
|
The model has been trained using an efficient few-shot learning technique that involves: |
|
|
|
1. Fine-tuning a [Sentence Transformer](https://www.sbert.net) with contrastive learning. |
|
2. Training a classification head with features from the fine-tuned Sentence Transformer. |
|
|
|
## Model Details |
|
|
|
### Model Description |
|
- **Model Type:** SetFit |
|
- **Sentence Transformer body:** [sentence-transformers/all-mpnet-base-v2](https://huggingface.co/sentence-transformers/all-mpnet-base-v2) |
|
- **Classification head:** a [LogisticRegression](https://scikit-learn.org/stable/modules/generated/sklearn.linear_model.LogisticRegression.html) instance |
|
- **Maximum Sequence Length:** 384 tokens |
|
- **Number of Classes:** 3 classes |
|
- **Training Dataset:** [hojzas/proj8-lab2](https://huggingface.co/datasets/hojzas/proj8-lab2) |
|
<!-- - **Language:** Unknown --> |
|
<!-- - **License:** Unknown --> |
|
|
|
### Model Sources |
|
|
|
- **Repository:** [SetFit on GitHub](https://github.com/huggingface/setfit) |
|
- **Paper:** [Efficient Few-Shot Learning Without Prompts](https://arxiv.org/abs/2209.11055) |
|
- **Blogpost:** [SetFit: Efficient Few-Shot Learning Without Prompts](https://huggingface.co/blog/setfit) |
|
|
|
### Model Labels |
|
| Label | Examples | |
|
|:------|:-------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------| |
|
| 0 | <ul><li>'def first_with_given_key(iterable, key=lambda x: x):\\n keys_in_list = []\\n for it in iterable:\\n if key(it) not in keys_in_list:\\n keys_in_list.append(key(it))\\n yield it'</li><li>'def first_with_given_key(iterable, key=lambda value: value):\\n it = iter(iterable)\\n saved_keys = []\\n while True:\\n try:\\n value = next(it)\\n if key(value) not in saved_keys:\\n saved_keys.append(key(value))\\n yield value\\n except StopIteration:\\n break'</li><li>'def first_with_given_key(iterable, key=None):\\n if key is None:\\n key = lambda x: x\\n item_list = []\\n key_set = set()\\n for item in iterable:\\n generated_item = key(item)\\n if generated_item not in item_list:\\n item_list.append(generated_item)\\n yield item'</li></ul> | |
|
| 2 | <ul><li>'def first_with_given_key(iterable, key=repr):\\n prev_keys = {}\\n lamb_key = lambda item: key(item)\\n for obj in iterable:\\n obj_key = lamb_key(obj)\\n if(obj_key) in prev_keys.keys():\\n continue\\n try:\\n prev_keys[hash(obj_key)] = repr(obj)\\n except TypeError:\\n prev_keys[repr(obj_key)] = repr(obj)\\n yield obj'</li><li>'def first_with_given_key(iterable, key=repr):\\n used_keys = dict()\\n get_key = lambda index: key(index)\\n for index in iterable:\\n index_key = get_key(index)\\n if index_key in used_keys.keys():\\n continue\\n try:\\n used_keys[hash(index_key)] = repr(index)\\n except TypeError:\\n used_keys[repr(index_key)] = repr(index)\\n yield index'</li><li>'def first_with_given_key(iterable, key=lambda x: x):\\n keys_used = {}\\n for item in iterable:\\n rp = repr(key(item))\\n if rp not in keys_used.keys():\\n keys_used[rp] = repr(item)\\n yield item'</li></ul> | |
|
| 1 | <ul><li>'def first_with_given_key(lst, key = lambda x: x):\\n res = set()\\n for i in lst:\\n if repr(key(i)) not in res:\\n res.add(repr(key(i)))\\n yield i'</li><li>'def first_with_given_key(iterable, key=repr):\\n set_of_keys = set()\\n lambda_key = (lambda x: key(x))\\n for item in iterable:\\n key = lambda_key(item)\\n try:\\n key_for_set = hash(key)\\n except TypeError:\\n key_for_set = repr(key)\\n if key_for_set in set_of_keys:\\n continue\\n set_of_keys.add(key_for_set)\\n yield item'</li><li>'def first_with_given_key(iterable, key=None):\\n if key is None:\\n key = identity\\n appeared_keys = set()\\n for item in iterable:\\n generated_key = key(item)\\n if not generated_key.__hash__:\\n generated_key = repr(generated_key)\\n if generated_key not in appeared_keys:\\n appeared_keys.add(generated_key)\\n yield item'</li></ul> | |
|
|
|
## Uses |
|
|
|
### Direct Use for Inference |
|
|
|
First install the SetFit library: |
|
|
|
```bash |
|
pip install setfit |
|
``` |
|
|
|
Then you can load this model and run inference. |
|
|
|
```python |
|
from setfit import SetFitModel |
|
|
|
# Download from the 🤗 Hub |
|
model = SetFitModel.from_pretrained("hojzas/proj8-lab2") |
|
# Run inference |
|
preds = model("def first_with_given_key(iterable, key=lambda x: x):\n keys=[]\n for i in iterable:\n if key(i) not in keys:\n yield i\n keys.append(key(i))") |
|
``` |
|
|
|
<!-- |
|
### Downstream Use |
|
|
|
*List how someone could finetune this model on their own dataset.* |
|
--> |
|
|
|
<!-- |
|
### Out-of-Scope Use |
|
|
|
*List how the model may foreseeably be misused and address what users ought not to do with the model.* |
|
--> |
|
|
|
<!-- |
|
## Bias, Risks and Limitations |
|
|
|
*What are the known or foreseeable issues stemming from this model? You could also flag here known failure cases or weaknesses of the model.* |
|
--> |
|
|
|
<!-- |
|
### Recommendations |
|
|
|
*What are recommendations with respect to the foreseeable issues? For example, filtering explicit content.* |
|
--> |
|
|
|
## Training Details |
|
|
|
### Training Set Metrics |
|
| Training set | Min | Median | Max | |
|
|:-------------|:----|:--------|:----| |
|
| Word count | 43 | 92.2069 | 125 | |
|
|
|
| Label | Training Sample Count | |
|
|:------|:----------------------| |
|
| 0 | 13 | |
|
| 1 | 8 | |
|
| 2 | 8 | |
|
|
|
### Training Hyperparameters |
|
- batch_size: (16, 16) |
|
- num_epochs: (1, 1) |
|
- max_steps: -1 |
|
- sampling_strategy: oversampling |
|
- num_iterations: 20 |
|
- body_learning_rate: (2e-05, 2e-05) |
|
- head_learning_rate: 2e-05 |
|
- loss: CosineSimilarityLoss |
|
- distance_metric: cosine_distance |
|
- margin: 0.25 |
|
- end_to_end: False |
|
- use_amp: False |
|
- warmup_proportion: 0.1 |
|
- seed: 42 |
|
- eval_max_steps: -1 |
|
- load_best_model_at_end: False |
|
|
|
### Training Results |
|
| Epoch | Step | Training Loss | Validation Loss | |
|
|:------:|:----:|:-------------:|:---------------:| |
|
| 0.0137 | 1 | 0.4142 | - | |
|
| 0.6849 | 50 | 0.0024 | - | |
|
|
|
### Environmental Impact |
|
Carbon emissions were measured using [CodeCarbon](https://github.com/mlco2/codecarbon). |
|
- **Carbon Emitted**: 0.002 kg of CO2 |
|
- **Hours Used**: 0.006 hours |
|
|
|
### Training Hardware |
|
- **On Cloud**: No |
|
- **GPU Model**: 4 x NVIDIA RTX A5000 |
|
- **CPU Model**: Intel(R) Xeon(R) Silver 4314 CPU @ 2.40GHz |
|
- **RAM Size**: 251.49 GB |
|
|
|
### Framework Versions |
|
- Python: 3.10.12 |
|
- SetFit: 1.0.3 |
|
- Sentence Transformers: 2.2.2 |
|
- Transformers: 4.36.1 |
|
- PyTorch: 2.1.2+cu121 |
|
- Datasets: 2.14.7 |
|
- Tokenizers: 0.15.1 |
|
|
|
## Citation |
|
|
|
### BibTeX |
|
```bibtex |
|
@article{https://doi.org/10.48550/arxiv.2209.11055, |
|
doi = {10.48550/ARXIV.2209.11055}, |
|
url = {https://arxiv.org/abs/2209.11055}, |
|
author = {Tunstall, Lewis and Reimers, Nils and Jo, Unso Eun Seo and Bates, Luke and Korat, Daniel and Wasserblat, Moshe and Pereg, Oren}, |
|
keywords = {Computation and Language (cs.CL), FOS: Computer and information sciences, FOS: Computer and information sciences}, |
|
title = {Efficient Few-Shot Learning Without Prompts}, |
|
publisher = {arXiv}, |
|
year = {2022}, |
|
copyright = {Creative Commons Attribution 4.0 International} |
|
} |
|
``` |
|
|
|
<!-- |
|
## Glossary |
|
|
|
*Clearly define terms in order to be accessible across audiences.* |
|
--> |
|
|
|
<!-- |
|
## Model Card Authors |
|
|
|
*Lists the people who create the model card, providing recognition and accountability for the detailed work that goes into its construction.* |
|
--> |
|
|
|
<!-- |
|
## Model Card Contact |
|
|
|
*Provides a way for people who have updates to the Model Card, suggestions, or questions, to contact the Model Card authors.* |
|
--> |