hojzas's picture
Add SetFit model
1f244b9 verified
|
raw
history blame
12 kB
metadata
library_name: setfit
tags:
  - setfit
  - sentence-transformers
  - text-classification
  - generated_from_setfit_trainer
datasets:
  - hojzas/proj8-label2
metrics:
  - accuracy
widget:
  - text: |-
      def first_with_given_key(iterable, key=lambda y: y):
          done=list()
          it=iter(iterable)
          while not False:
              try:
                  value=next(it)
                  if key(value) not in done:
                      yield value
                      done.insert(-1,key(value))
              except StopIteration:
                  break
  - text: |-
      def first_with_given_key(iterable, key=lambda y: y):
          it=iter(iterable)
          li=list()
          while not False:
              try:
                  hodnota=next(it)
                  if key(hodnota) not in li:
                      yield hodnota
                      li.insert(-1,key(hodnota))
              except StopIteration:
                  break
  - text: |-
      def first_with_given_key(iterable, key=lambda item : item):
          key_list = set()
          it = iter(iterable)
          while True:
              try:
                  item = next(it)
                  value = key(item)
                  try:
                      value = hash(value)
                  except TypeError:
                      value = repr(value)
                  if value not in key_list:
                      key_list.add(value)
                      yield item
              except StopIteration:
                  break
  - text: |-
      def first_with_given_key(iterable, key=lambda x: x):
          done=list()
          for value in iterable:
              if key(value) not in done:
                  yield value
                  done.insert(-1,key(value))
  - text: |-
      def first_with_given_key(iterable, key=repr):
          used_keys = {}
          get_key = return_key(key)
          for item in iterable:
              item_key = get_key(item)
              if item_key in used_keys.keys():
                  continue
              try:
                  used_keys[hash(item_key)] = repr(item)
              except TypeError:
                  used_keys[repr(item_key)] = repr(item)
              yield item
pipeline_tag: text-classification
inference: true
co2_eq_emissions:
  emissions: 0.2503482872622149
  source: codecarbon
  training_type: fine-tuning
  on_cloud: false
  cpu_model: Intel(R) Xeon(R) Silver 4314 CPU @ 2.40GHz
  ram_total_size: 251.49160385131836
  hours_used: 0.005
base_model: sentence-transformers/all-mpnet-base-v2

SetFit with sentence-transformers/all-mpnet-base-v2

This is a SetFit model trained on the hojzas/proj8-label2 dataset that can be used for Text Classification. This SetFit model uses sentence-transformers/all-mpnet-base-v2 as the Sentence Transformer embedding model. A LogisticRegression instance is used for classification.

The model has been trained using an efficient few-shot learning technique that involves:

  1. Fine-tuning a Sentence Transformer with contrastive learning.
  2. Training a classification head with features from the fine-tuned Sentence Transformer.

Model Details

Model Description

Model Sources

Model Labels

Label Examples
0
  • 'def first_with_given_key(iterable, key=lambda x: x):\n keys_in_list = []\n for it in iterable:\n if key(it) not in keys_in_list:\n keys_in_list.append(key(it))\n yield it'
  • 'def first_with_given_key(iterable, key=lambda value: value):\n it = iter(iterable)\n saved_keys = []\n while True:\n try:\n value = next(it)\n if key(value) not in saved_keys:\n saved_keys.append(key(value))\n yield value\n except StopIteration:\n break'
  • 'def first_with_given_key(iterable, key=None):\n if key is None:\n key = lambda x: x\n item_list = []\n key_set = set()\n for item in iterable:\n generated_item = key(item)\n if generated_item not in item_list:\n item_list.append(generated_item)\n yield item'
1
  • 'def first_with_given_key(lst, key = lambda x: x):\n res = set()\n for i in lst:\n if repr(key(i)) not in res:\n res.add(repr(key(i)))\n yield i'
  • 'def first_with_given_key(iterable, key=repr):\n set_of_keys = set()\n lambda_key = (lambda x: key(x))\n for item in iterable:\n key = lambda_key(item)\n try:\n key_for_set = hash(key)\n except TypeError:\n key_for_set = repr(key)\n if key_for_set in set_of_keys:\n continue\n set_of_keys.add(key_for_set)\n yield item'
  • 'def first_with_given_key(iterable, key=None):\n if key is None:\n key = identity\n appeared_keys = set()\n for item in iterable:\n generated_key = key(item)\n if not generated_key.hash:\n generated_key = repr(generated_key)\n if generated_key not in appeared_keys:\n appeared_keys.add(generated_key)\n yield item'

Uses

Direct Use for Inference

First install the SetFit library:

pip install setfit

Then you can load this model and run inference.

from setfit import SetFitModel

# Download from the 🤗 Hub
model = SetFitModel.from_pretrained("hojzas/setfit-proj8-all-mpnet-base-v2")
# Run inference
preds = model("def first_with_given_key(iterable, key=lambda x: x):
    done=list()
    for value in iterable:
        if key(value) not in done:
            yield value
            done.insert(-1,key(value))")

Training Details

Training Set Metrics

Training set Min Median Max
Word count 43 90.28 119
Label Training Sample Count
0 20
1 5

Training Hyperparameters

  • batch_size: (16, 16)
  • num_epochs: (1, 1)
  • max_steps: -1
  • sampling_strategy: oversampling
  • num_iterations: 20
  • body_learning_rate: (2e-05, 2e-05)
  • head_learning_rate: 2e-05
  • loss: CosineSimilarityLoss
  • distance_metric: cosine_distance
  • margin: 0.25
  • end_to_end: False
  • use_amp: False
  • warmup_proportion: 0.1
  • seed: 42
  • eval_max_steps: -1
  • load_best_model_at_end: False

Training Results

Epoch Step Training Loss Validation Loss
0.0159 1 0.3873 -
0.7937 50 0.0032 -

Environmental Impact

Carbon emissions were measured using CodeCarbon.

  • Carbon Emitted: 0.000 kg of CO2
  • Hours Used: 0.005 hours

Training Hardware

  • On Cloud: No
  • GPU Model: No GPU used
  • CPU Model: Intel(R) Xeon(R) Silver 4314 CPU @ 2.40GHz
  • RAM Size: 251.49 GB

Framework Versions

  • Python: 3.10.12
  • SetFit: 1.0.3
  • Sentence Transformers: 2.2.2
  • Transformers: 4.36.1
  • PyTorch: 2.1.2+cu121
  • Datasets: 2.14.7
  • Tokenizers: 0.15.1

Citation

BibTeX

@article{https://doi.org/10.48550/arxiv.2209.11055,
    doi = {10.48550/ARXIV.2209.11055},
    url = {https://arxiv.org/abs/2209.11055},
    author = {Tunstall, Lewis and Reimers, Nils and Jo, Unso Eun Seo and Bates, Luke and Korat, Daniel and Wasserblat, Moshe and Pereg, Oren},
    keywords = {Computation and Language (cs.CL), FOS: Computer and information sciences, FOS: Computer and information sciences},
    title = {Efficient Few-Shot Learning Without Prompts},
    publisher = {arXiv},
    year = {2022},
    copyright = {Creative Commons Attribution 4.0 International}
}