LunarLander-v2 / config.json
husseinmo's picture
LunarLander-v2 initial agent - PPO
8eb6ade verified
raw
history blame
13.6 kB
{"policy_class": {":type:": "<class 'abc.ABCMeta'>", ":serialized:": "gAWVOwAAAAAAAACMIXN0YWJsZV9iYXNlbGluZXMzLmNvbW1vbi5wb2xpY2llc5SMEUFjdG9yQ3JpdGljUG9saWN5lJOULg==", "__module__": "stable_baselines3.common.policies", "__doc__": "\n Policy class for actor-critic algorithms (has both policy and value prediction).\n Used by A2C, PPO and the likes.\n\n :param observation_space: Observation space\n :param action_space: Action space\n :param lr_schedule: Learning rate schedule (could be constant)\n :param net_arch: The specification of the policy and value networks.\n :param activation_fn: Activation function\n :param ortho_init: Whether to use or not orthogonal initialization\n :param use_sde: Whether to use State Dependent Exploration or not\n :param log_std_init: Initial value for the log standard deviation\n :param full_std: Whether to use (n_features x n_actions) parameters\n for the std instead of only (n_features,) when using gSDE\n :param use_expln: Use ``expln()`` function instead of ``exp()`` to ensure\n a positive standard deviation (cf paper). It allows to keep variance\n above zero and prevent it from growing too fast. In practice, ``exp()`` is usually enough.\n :param squash_output: Whether to squash the output using a tanh function,\n this allows to ensure boundaries when using gSDE.\n :param features_extractor_class: Features extractor to use.\n :param features_extractor_kwargs: Keyword arguments\n to pass to the features extractor.\n :param share_features_extractor: If True, the features extractor is shared between the policy and value networks.\n :param normalize_images: Whether to normalize images or not,\n dividing by 255.0 (True by default)\n :param optimizer_class: The optimizer to use,\n ``th.optim.Adam`` by default\n :param optimizer_kwargs: Additional keyword arguments,\n excluding the learning rate, to pass to the optimizer\n ", "__init__": "<function ActorCriticPolicy.__init__ at 0x7d74cbb0e0e0>", "_get_constructor_parameters": "<function ActorCriticPolicy._get_constructor_parameters at 0x7d74cbb0e170>", "reset_noise": "<function ActorCriticPolicy.reset_noise at 0x7d74cbb0e200>", "_build_mlp_extractor": "<function ActorCriticPolicy._build_mlp_extractor at 0x7d74cbb0e290>", "_build": "<function ActorCriticPolicy._build at 0x7d74cbb0e320>", "forward": "<function ActorCriticPolicy.forward at 0x7d74cbb0e3b0>", "extract_features": "<function ActorCriticPolicy.extract_features at 0x7d74cbb0e440>", "_get_action_dist_from_latent": "<function ActorCriticPolicy._get_action_dist_from_latent at 0x7d74cbb0e4d0>", "_predict": "<function ActorCriticPolicy._predict at 0x7d74cbb0e560>", "evaluate_actions": "<function ActorCriticPolicy.evaluate_actions at 0x7d74cbb0e5f0>", "get_distribution": "<function ActorCriticPolicy.get_distribution at 0x7d74cbb0e680>", "predict_values": "<function ActorCriticPolicy.predict_values at 0x7d74cbb0e710>", "__abstractmethods__": "frozenset()", "_abc_impl": "<_abc._abc_data object at 0x7d746d7e5980>"}, "verbose": 1, "policy_kwargs": {}, "num_timesteps": 1507328, "_total_timesteps": 1500000, "_num_timesteps_at_start": 0, "seed": null, "action_noise": null, "start_time": 1732372928509773825, "learning_rate": 0.0003, "tensorboard_log": null, "_last_obs": {":type:": "<class 'numpy.ndarray'>", ":serialized:": "gAWVdQIAAAAAAACMEm51bXB5LmNvcmUubnVtZXJpY5SMC19mcm9tYnVmZmVylJOUKJYAAgAAAAAAADNjlTovPIs+QiKGvp6Dr77Ciai9da/7vQAAAAAAAAAAmhkDvYJCpz+2vTq+I6D6vlyoFr1Antu9AAAAAAAAAABmZqC4f822P2a+BLyTg2o+iZyYOw8/QD0AAAAAAAAAAGaOkb1SMbu7ahqGPINujjzHcSc9dkhxvQAAgD8AAIA/WiV0vmp4F70tnHq7cGMlupQlhT5GMac6AACAPwAAgD9K/4i+/26BP8JY1L7Awhm/mGMHv4lRtr4AAAAAAAAAAOBCCT7Gn+U+F0yNvbLUCr+V30M+FtQfvgAAAAAAAAAArfUmvqjDkD/0SBK/ju4nv0e0Ub7kErK+AAAAAAAAAACzRaS9JG6YP3CW7L6EMCi/HZWyvbjcYb4AAAAAAAAAAM3s2jrDNRW6MuGqM4G5ly9aQiY7Yj/EswAAgD8AAIA/mtsfvgXwUj+eH8S9N3wKv8pqfr6qtDG8AAAAAAAAAAAaCx69Sd2zP/PtIL8xC9+9L4uGPH1Mc7wAAAAAAAAAAEB6hD0ZoT4+K+z7vYYjtL592Kw8ZbhUvQAAAAAAAAAAzZMAvbZPjz/FhAe+ZH9Nv/fjrrwq1bg7AAAAAAAAAABriYe+t+ogP/prNj2WwBK/RrPmvk39KT4AAAAAAAAAAGa4/Tw4e7k/g19EP0GXxD62Ms+8dXaRvQAAAAAAAAAAlIwFbnVtcHmUjAVkdHlwZZSTlIwCZjSUiYiHlFKUKEsDjAE8lE5OTkr/////Sv////9LAHSUYksQSwiGlIwBQ5R0lFKULg=="}, "_last_episode_starts": {":type:": "<class 'numpy.ndarray'>", ":serialized:": "gAWVgwAAAAAAAACMEm51bXB5LmNvcmUubnVtZXJpY5SMC19mcm9tYnVmZmVylJOUKJYQAAAAAAAAAAAAAAAAAAAAAAAAAAAAAACUjAVudW1weZSMBWR0eXBllJOUjAJiMZSJiIeUUpQoSwOMAXyUTk5OSv////9K/////0sAdJRiSxCFlIwBQ5R0lFKULg=="}, "_last_original_obs": null, "_episode_num": 0, "use_sde": false, "sde_sample_freq": -1, "_current_progress_remaining": -0.004885333333333408, "_stats_window_size": 100, "ep_info_buffer": {":type:": "<class 'collections.deque'>", ":serialized:": "gAWV5gsAAAAAAACMC2NvbGxlY3Rpb25zlIwFZGVxdWWUk5QpS2SGlFKUKH2UKIwBcpRHQHI15/0/W2CMAWyUS+eMAXSUR0CljNNoakyldX2UKGgGR0ByN2q5sj3VaAdLzmgIR0CljNhtLteEdX2UKGgGR0BzkJtMwlByaAdLyWgIR0CljN5Ec81XdX2UKGgGR0Byw3XWe6I4aAdL0mgIR0CljO34bjtHdX2UKGgGR0BzY5pVS4vwaAdNsgJoCEdApYz8ZHd43XV9lChoBkdAcNjrtmcvumgHS8JoCEdApY1K4jKPn3V9lChoBkdAcita9sabWmgHS89oCEdApY3ZXr+o+HV9lChoBkdAcS/CYkVvdmgHS91oCEdApY3pMxoIwHV9lChoBkdAc0ybA1vVE2gHS+doCEdApY42Jxeb/nV9lChoBkdAci2xUNrj52gHS75oCEdApY6JZyMkyHV9lChoBkdAcZ/PE87p3WgHS9loCEdApY6c/lhgE3V9lChoBkdAckshcZ9/jWgHS71oCEdApY6o3rD633V9lChoBkdAbxLqWTot+WgHS7poCEdApY67MmnfmHV9lChoBkdAcneRhc7hemgHS9hoCEdApY6/9ehPCXV9lChoBkdAcMzrc0tRN2gHS7FoCEdApY6/zQNTcnV9lChoBkdAc2UU4rBj4GgHS8JoCEdApY7pl6JIlXV9lChoBkdAcd0X1rZam2gHS7NoCEdApY7sG7jDK3V9lChoBkdAcouwEQoTf2gHS+RoCEdApY8AWk8A73V9lChoBkdAc2Kji4rjHWgHS8poCEdApY8XIMjNZHV9lChoBkdAbu+1PWQOnWgHS9VoCEdApY8ih8IAwXV9lChoBkdAcG6X8fmtAGgHS8NoCEdApY9kbrC3w3V9lChoBkdAc3XOiWVu8GgHS8toCEdApZANqnFYMnV9lChoBkdAcN4amoBJZmgHS8xoCEdApZAhMewLVnV9lChoBkdAWZuq1gH/tWgHTegDaAhHQKWQiEnLJS11fZQoaAZHQHM7KVt4zJpoB0vAaAhHQKWQpBEa2nd1fZQoaAZHQHJclqnFYMhoB0vTaAhHQKWQ7EroW591fZQoaAZHQHIaBGlQ/HJoB0vUaAhHQKWQ+xFAmiR1fZQoaAZHQHFE6m4y44JoB0vAaAhHQKWRAwHqu8t1fZQoaAZHQHJ7jGcWj45oB0vRaAhHQKWRBK8tf5V1fZQoaAZHQHI0PpUxVQ1oB0vUaAhHQKWREKYRdyF1fZQoaAZHQHFICHM2WIJoB0vMaAhHQKWRJhBJI2B1fZQoaAZHQHKP2NWEK3NoB0vPaAhHQKWRQa1kUbl1fZQoaAZHQHM1BEWqLjxoB0vraAhHQKWRTFm4Ajp1fZQoaAZHQHCiFMdtEXtoB0vdaAhHQKWRfAKOT7l1fZQoaAZHQHG4pcxCY1JoB0u9aAhHQKWRe3qiXY11fZQoaAZHQHL7s7p3X7NoB0vnaAhHQKWRnxgiNbV1fZQoaAZHQHPB2zByjpNoB01JAWgIR0Clkb3u/k/9dX2UKGgGR0BwPBepn6EbaAdLzmgIR0Clkjja4+bFdX2UKGgGR0Bycokka/ATaAdL2mgIR0ClkmpSJj2BdX2UKGgGR0Bymybz9S/CaAdLv2gIR0Clkniu+yqudX2UKGgGR0BwVO4BmwqzaAdLymgIR0Clkq6nBLwndX2UKGgGR0BwRgfZElVtaAdLuWgIR0ClktlYEGJOdX2UKGgGR0BxfeqXF98aaAdLtGgIR0ClkuyThYNidX2UKGgGR0BzS8UtZmqYaAdLx2gIR0ClkvVnVXmvdX2UKGgGR0Bx7Gnzg/C7aAdLz2gIR0Clkv0fxMFmdX2UKGgGR0ByF4yP+4smaAdL1mgIR0ClkyAvL5h0dX2UKGgGR0BxHYox59mZaAdL3WgIR0ClkzrU9ZA6dX2UKGgGR0BzUMbKifxuaAdL1WgIR0Clk151/2CedX2UKGgGR0Byk5uhsZYQaAdL0GgIR0Clk4Bpxm03dX2UKGgGR0Bxw0/0NBnjaAdLxmgIR0Clk43vH93sdX2UKGgGR0Bzb5QaaTfSaAdL2GgIR0Clk5VdxAB1dX2UKGgGR0ByQrmDDjzaaAdL9GgIR0Clk5/Ot4iYdX2UKGgGR0Bvsh1A7gbZaAdLw2gIR0Clk6Qc5sCUdX2UKGgGR0ByO9cLSeAeaAdLu2gIR0CllAAjps42dX2UKGgGR0Bv2P1anrIHaAdLuWgIR0CllDWgvlEJdX2UKGgGR0BxhvOs1baAaAdLy2gIR0CllFt4qwyJdX2UKGgGR0ByaUjmjj7zaAdLumgIR0CllLpUYKpldX2UKGgGR0Bwz6phnanKaAdLx2gIR0CllMCKrJbMdX2UKGgGR0BxLldyDIzWaAdL0mgIR0CllPNTDO1OdX2UKGgGR0Bxe8ExIre7aAdLz2gIR0CllPzPa+N+dX2UKGgGR0BvzJyp71IzaAdLxmgIR0CllQt0V8CxdX2UKGgGR0Bx0c0SAYpEaAdLtmgIR0CllUyn+AEudX2UKGgGR0BzyloSL61taAdL1GgIR0CllU+SKWLQdX2UKGgGR0BxXZvKlpGnaAdNGAFoCEdApZVub3Gn43V9lChoBkdAc67hvBJqZmgHS8FoCEdApZV5pFkQPXV9lChoBkdAczkQJ5VwP2gHS99oCEdApZWWU6gdwXV9lChoBkdAcHzEqDsdDWgHS8loCEdApZWmweNkv3V9lChoBkdAcXyQiRnvlWgHS+ZoCEdApZXdMuez2XV9lChoBkdAb1+nR9gF5mgHS+NoCEdApZXhgJC0GHV9lChoBkdAcY7EsJ6Y3WgHS7toCEdApZXo57w8XHV9lChoBkdAcCo/+sHSnmgHS8BoCEdApZZD92ovSXV9lChoBkdAckrNxVAAyWgHS9JoCEdApZZWuFHrhXV9lChoBkdAPl/8l5WzW2gHS5NoCEdApZZ+THKfWnV9lChoBkdAcnEt2s7uD2gHS9RoCEdApZcT4DcM3XV9lChoBkdAcXD0lJHy3GgHS7toCEdApZdcQ9RrJ3V9lChoBkdAcbnoGIKtxWgHS+xoCEdApZdjKDCgsnV9lChoBkdAcMtr+Haew2gHTQgBaAhHQKWXbu2qkuZ1fZQoaAZHQG59mbsniNtoB0vdaAhHQKWXj15B1Ld1fZQoaAZHQHLL16qsEJVoB0vlaAhHQKWXp3EAHVx1fZQoaAZHQHH4v95yEL9oB0vJaAhHQKWXtdEb5uZ1fZQoaAZHQHI5RKDkELZoB0vWaAhHQKWXxeANG3F1fZQoaAZHQHAM/pQk5ZNoB0u7aAhHQKWXy35vcah1fZQoaAZHQHRJcFMZgohoB0vQaAhHQKWYAoESuhd1fZQoaAZHQHGSe7YkE9toB00EAWgIR0ClmBHnMdLhdX2UKGgGR0Bx+uaqjrRjaAdL02gIR0ClmBJ7TlT4dX2UKGgGR0ByTSfra/RFaAdLxmgIR0ClmFIhY/3WdX2UKGgGR0BxWrcL0BfbaAdL0GgIR0ClmH2d3B55dX2UKGgGR0BytomJFb3XaAdL7GgIR0ClmPCfg75mdX2UKGgGR0BxcqJoCdSVaAdLxWgIR0ClmR/q5byIdX2UKGgGR0ByrWeumrKeaAdLu2gIR0ClmVx7iQ1adX2UKGgGR0By4gjfNzKcaAdLvWgIR0ClmYQF1SwXdX2UKGgGR0BwhDhfjS5RaAdL02gIR0ClmZCyY5T7dX2UKGgGR0ByVqOMl1KXaAdL4mgIR0ClmcBHskY5dX2UKGgGR0BOHto8IRh+aAdLg2gIR0ClmeYKx9ofdX2UKGgGR0BxOeXfIjnnaAdLzWgIR0Clme+xwAEMdX2UKGgGR0BxAxOvdM0xaAdLuWgIR0Clmgcm0E5idX2UKGgGR0BxU094eLeiaAdLuWgIR0Clmggt4A0bdX2UKGgGR0ByGmuOjqOcaAdL52gIR0ClmiA5R0lrdX2UKGgGR0ByV0xnFo+OaAdL7mgIR0ClmiUvwmVrdX2UKGgGR0BxWkTYdyT7aAdLzGgIR0ClmiqVyFPBdWUu"}, "ep_success_buffer": {":type:": "<class 'collections.deque'>", ":serialized:": "gAWVIAAAAAAAAACMC2NvbGxlY3Rpb25zlIwFZGVxdWWUk5QpS2SGlFKULg=="}, "_n_updates": 368, "observation_space": {":type:": "<class 'gymnasium.spaces.box.Box'>", ":serialized:": "gAWVdgIAAAAAAACMFGd5bW5hc2l1bS5zcGFjZXMuYm94lIwDQm94lJOUKYGUfZQojAVkdHlwZZSMBW51bXB5lIwFZHR5cGWUk5SMAmY0lImIh5RSlChLA4wBPJROTk5K/////0r/////SwB0lGKMDWJvdW5kZWRfYmVsb3eUjBJudW1weS5jb3JlLm51bWVyaWOUjAtfZnJvbWJ1ZmZlcpSTlCiWCAAAAAAAAAABAQEBAQEBAZRoCIwCYjGUiYiHlFKUKEsDjAF8lE5OTkr/////Sv////9LAHSUYksIhZSMAUOUdJRSlIwNYm91bmRlZF9hYm92ZZRoESiWCAAAAAAAAAABAQEBAQEBAZRoFUsIhZRoGXSUUpSMBl9zaGFwZZRLCIWUjANsb3eUaBEoliAAAAAAAAAAAAC0wgAAtMIAAKDAAACgwNsPScAAAKDAAAAAgAAAAICUaAtLCIWUaBl0lFKUjARoaWdolGgRKJYgAAAAAAAAAAAAtEIAALRCAACgQAAAoEDbD0lAAACgQAAAgD8AAIA/lGgLSwiFlGgZdJRSlIwIbG93X3JlcHKUjFtbLTkwLiAgICAgICAgLTkwLiAgICAgICAgIC01LiAgICAgICAgIC01LiAgICAgICAgIC0zLjE0MTU5MjcgIC01LgogIC0wLiAgICAgICAgIC0wLiAgICAgICBdlIwJaGlnaF9yZXBylIxTWzkwLiAgICAgICAgOTAuICAgICAgICAgNS4gICAgICAgICA1LiAgICAgICAgIDMuMTQxNTkyNyAgNS4KICAxLiAgICAgICAgIDEuICAgICAgIF2UjApfbnBfcmFuZG9tlE51Yi4=", "dtype": "float32", "bounded_below": "[ True True True True True True True True]", "bounded_above": "[ True True True True True True True True]", "_shape": [8], "low": "[-90. -90. -5. -5. -3.1415927 -5.\n -0. -0. ]", "high": "[90. 90. 5. 5. 3.1415927 5.\n 1. 1. ]", "low_repr": "[-90. -90. -5. -5. -3.1415927 -5.\n -0. -0. ]", "high_repr": "[90. 90. 5. 5. 3.1415927 5.\n 1. 1. ]", "_np_random": null}, "action_space": {":type:": "<class 'gymnasium.spaces.discrete.Discrete'>", ":serialized:": "gAWV2wAAAAAAAACMGWd5bW5hc2l1bS5zcGFjZXMuZGlzY3JldGWUjAhEaXNjcmV0ZZSTlCmBlH2UKIwBbpSMFW51bXB5LmNvcmUubXVsdGlhcnJheZSMBnNjYWxhcpSTlIwFbnVtcHmUjAVkdHlwZZSTlIwCaTiUiYiHlFKUKEsDjAE8lE5OTkr/////Sv////9LAHSUYkMIBAAAAAAAAACUhpRSlIwFc3RhcnSUaAhoDkMIAAAAAAAAAACUhpRSlIwGX3NoYXBllCmMBWR0eXBllGgOjApfbnBfcmFuZG9tlE51Yi4=", "n": "4", "start": "0", "_shape": [], "dtype": "int64", "_np_random": null}, "n_envs": 16, "n_steps": 2048, "gamma": 0.999, "gae_lambda": 0.98, "ent_coef": 0.01, "vf_coef": 0.5, "max_grad_norm": 0.5, "batch_size": 32, "n_epochs": 8, "clip_range": {":type:": "<class 'function'>", ":serialized:": "gAWVrQIAAAAAAACMF2Nsb3VkcGlja2xlLmNsb3VkcGlja2xllIwOX21ha2VfZnVuY3Rpb26Uk5QoaACMDV9idWlsdGluX3R5cGWUk5SMCENvZGVUeXBllIWUUpQoSwFLAEsASwFLAUsTQwSIAFMAlE6FlCmMAV+UhZSMSS91c3IvbG9jYWwvbGliL3B5dGhvbjMuMTAvZGlzdC1wYWNrYWdlcy9zdGFibGVfYmFzZWxpbmVzMy9jb21tb24vdXRpbHMucHmUjARmdW5jlEuEQwIEAZSMA3ZhbJSFlCl0lFKUfZQojAtfX3BhY2thZ2VfX5SMGHN0YWJsZV9iYXNlbGluZXMzLmNvbW1vbpSMCF9fbmFtZV9flIwec3RhYmxlX2Jhc2VsaW5lczMuY29tbW9uLnV0aWxzlIwIX19maWxlX1+UjEkvdXNyL2xvY2FsL2xpYi9weXRob24zLjEwL2Rpc3QtcGFja2FnZXMvc3RhYmxlX2Jhc2VsaW5lczMvY29tbW9uL3V0aWxzLnB5lHVOTmgAjBBfbWFrZV9lbXB0eV9jZWxslJOUKVKUhZR0lFKUaACMEl9mdW5jdGlvbl9zZXRzdGF0ZZSTlGgffZR9lChoFowEZnVuY5SMDF9fcXVhbG5hbWVfX5SMGWNvbnN0YW50X2ZuLjxsb2NhbHM+LmZ1bmOUjA9fX2Fubm90YXRpb25zX1+UfZSMDl9fa3dkZWZhdWx0c19flE6MDF9fZGVmYXVsdHNfX5ROjApfX21vZHVsZV9flGgXjAdfX2RvY19flE6MC19fY2xvc3VyZV9flGgAjApfbWFrZV9jZWxslJOURz/JmZmZmZmahZRSlIWUjBdfY2xvdWRwaWNrbGVfc3VibW9kdWxlc5RdlIwLX19nbG9iYWxzX1+UfZR1hpSGUjAu"}, "clip_range_vf": null, "normalize_advantage": true, "target_kl": null, "lr_schedule": {":type:": "<class 'function'>", ":serialized:": "gAWVrQIAAAAAAACMF2Nsb3VkcGlja2xlLmNsb3VkcGlja2xllIwOX21ha2VfZnVuY3Rpb26Uk5QoaACMDV9idWlsdGluX3R5cGWUk5SMCENvZGVUeXBllIWUUpQoSwFLAEsASwFLAUsTQwSIAFMAlE6FlCmMAV+UhZSMSS91c3IvbG9jYWwvbGliL3B5dGhvbjMuMTAvZGlzdC1wYWNrYWdlcy9zdGFibGVfYmFzZWxpbmVzMy9jb21tb24vdXRpbHMucHmUjARmdW5jlEuEQwIEAZSMA3ZhbJSFlCl0lFKUfZQojAtfX3BhY2thZ2VfX5SMGHN0YWJsZV9iYXNlbGluZXMzLmNvbW1vbpSMCF9fbmFtZV9flIwec3RhYmxlX2Jhc2VsaW5lczMuY29tbW9uLnV0aWxzlIwIX19maWxlX1+UjEkvdXNyL2xvY2FsL2xpYi9weXRob24zLjEwL2Rpc3QtcGFja2FnZXMvc3RhYmxlX2Jhc2VsaW5lczMvY29tbW9uL3V0aWxzLnB5lHVOTmgAjBBfbWFrZV9lbXB0eV9jZWxslJOUKVKUhZR0lFKUaACMEl9mdW5jdGlvbl9zZXRzdGF0ZZSTlGgffZR9lChoFowEZnVuY5SMDF9fcXVhbG5hbWVfX5SMGWNvbnN0YW50X2ZuLjxsb2NhbHM+LmZ1bmOUjA9fX2Fubm90YXRpb25zX1+UfZSMDl9fa3dkZWZhdWx0c19flE6MDF9fZGVmYXVsdHNfX5ROjApfX21vZHVsZV9flGgXjAdfX2RvY19flE6MC19fY2xvc3VyZV9flGgAjApfbWFrZV9jZWxslJOURz8zqSowVTJhhZRSlIWUjBdfY2xvdWRwaWNrbGVfc3VibW9kdWxlc5RdlIwLX19nbG9iYWxzX1+UfZR1hpSGUjAu"}, "system_info": {"OS": "Linux-6.1.85+-x86_64-with-glibc2.35 # 1 SMP PREEMPT_DYNAMIC Thu Jun 27 21:05:47 UTC 2024", "Python": "3.10.12", "Stable-Baselines3": "2.0.0a5", "PyTorch": "2.5.1+cu121", "GPU Enabled": "True", "Numpy": "1.26.4", "Cloudpickle": "3.1.0", "Gymnasium": "0.28.1", "OpenAI Gym": "0.25.2"}}