my_translator_vi-en / README.md
huythai855's picture
MachineTranslation
0fcce98
|
raw
history blame
1.81 kB
---
license: mit
base_model: VietAI/vit5-base
tags:
- generated_from_trainer
datasets:
- mt_eng_vietnamese
metrics:
- bleu
model-index:
- name: my_translator_vi-en
results:
- task:
name: Sequence-to-sequence Language Modeling
type: text2text-generation
dataset:
name: mt_eng_vietnamese
type: mt_eng_vietnamese
config: iwslt2015-vi-en
split: test[:2%]
args: iwslt2015-vi-en
metrics:
- name: Bleu
type: bleu
value: 2.6085
---
<!-- This model card has been generated automatically according to the information the Trainer had access to. You
should probably proofread and complete it, then remove this comment. -->
# my_translator_vi-en
This model is a fine-tuned version of [VietAI/vit5-base](https://huggingface.co/VietAI/vit5-base) on the mt_eng_vietnamese dataset.
It achieves the following results on the evaluation set:
- Loss: 3.3819
- Bleu: 2.6085
- Gen Len: 18.36
## Model description
More information needed
## Intended uses & limitations
More information needed
## Training and evaluation data
More information needed
## Training procedure
### Training hyperparameters
The following hyperparameters were used during training:
- learning_rate: 2e-05
- train_batch_size: 4
- eval_batch_size: 4
- seed: 42
- optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08
- lr_scheduler_type: linear
- num_epochs: 2
### Training results
| Training Loss | Epoch | Step | Validation Loss | Bleu | Gen Len |
|:-------------:|:-----:|:----:|:---------------:|:------:|:-------:|
| 3.9425 | 1.0 | 667 | 3.5155 | 2.3213 | 17.32 |
| 3.2655 | 2.0 | 1334 | 3.3819 | 2.6085 | 18.36 |
### Framework versions
- Transformers 4.34.1
- Pytorch 2.1.0+cu118
- Datasets 2.14.5
- Tokenizers 0.14.1