distilhubertmk6 / README.md
hwhjones's picture
End of training
b0cb7b2
---
license: apache-2.0
base_model: ntu-spml/distilhubert
tags:
- generated_from_trainer
datasets:
- marsyas/gtzan
metrics:
- accuracy
model-index:
- name: distilhubert-finetuned-gtzan
results:
- task:
name: Audio Classification
type: audio-classification
dataset:
name: GTZAN
type: marsyas/gtzan
config: all
split: train
args: all
metrics:
- name: Accuracy
type: accuracy
value: 0.86
---
<!-- This model card has been generated automatically according to the information the Trainer had access to. You
should probably proofread and complete it, then remove this comment. -->
# distilhubert-finetuned-gtzan
This model is a fine-tuned version of [ntu-spml/distilhubert](https://huggingface.co/ntu-spml/distilhubert) on the GTZAN dataset.
It achieves the following results on the evaluation set:
- Loss: 0.7806
- Accuracy: 0.86
## Model description
More information needed
## Intended uses & limitations
More information needed
## Training and evaluation data
More information needed
## Training procedure
### Training hyperparameters
The following hyperparameters were used during training:
- learning_rate: 5e-05
- train_batch_size: 4
- eval_batch_size: 4
- seed: 42
- optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08
- lr_scheduler_type: linear
- lr_scheduler_warmup_ratio: 0.1
- num_epochs: 12
### Training results
| Training Loss | Epoch | Step | Validation Loss | Accuracy |
|:-------------:|:-----:|:----:|:---------------:|:--------:|
| 1.9319 | 1.0 | 225 | 1.7064 | 0.46 |
| 1.0203 | 2.0 | 450 | 1.1880 | 0.63 |
| 0.3998 | 3.0 | 675 | 0.7785 | 0.8 |
| 0.8704 | 4.0 | 900 | 0.5667 | 0.87 |
| 0.144 | 5.0 | 1125 | 0.5302 | 0.85 |
| 0.0899 | 6.0 | 1350 | 0.8483 | 0.81 |
| 0.1915 | 7.0 | 1575 | 0.8379 | 0.81 |
| 0.0073 | 8.0 | 1800 | 0.6286 | 0.86 |
| 0.0061 | 9.0 | 2025 | 0.6733 | 0.86 |
| 0.0163 | 10.0 | 2250 | 0.8342 | 0.84 |
| 0.0029 | 11.0 | 2475 | 0.7477 | 0.85 |
| 0.0032 | 12.0 | 2700 | 0.7806 | 0.86 |
### Framework versions
- Transformers 4.37.0.dev0
- Pytorch 2.1.0+cu121
- Datasets 2.16.0
- Tokenizers 0.15.0