Nikola299's picture
Update README.md
2e80a9b verified
|
raw
history blame
1.8 kB
---
base_model: INSAIT-Institute/BgGPT-7B-Instruct-v0.2
library_name: peft
license: apache-2.0
language:
- en
tags:
- propaganda
---
# Model Card for identrics/BG_propaganda_detector
## Model Description
- **Developed by:** [`Identrics`](https://identrics.ai/)
- **Language:** Bulgarian
- **License:** apache-2.0
- **Finetuned from model:** [`google-bert/bert-base-cased`](https://huggingface.co/google-bert/bert-base-cased)
- **Context window :** 8192 tokens
## Model Description
This model consists of a fine-tuned version of google-bert/bert-base-cased for a propaganda detection task. It is effectively a binary classifier, determining wether propaganda is present in the output string.
This model was created by [`Identrics`](https://identrics.ai/), in the scope of the Wasper project.
## Uses
To be used as a binary classifier to identify if propaganda is present in a string containing a comment from a social media site
### Example
First install direct dependencies:
```
pip install transformers torch accelerate
```
Then the model can be downloaded and used for inference:
```py
from transformers import AutoModelForSequenceClassification, AutoTokenizer
model = AutoModelForSequenceClassification.from_pretrained("identrics/EN_propaganda_detector", num_labels=2)
tokenizer = AutoTokenizer.from_pretrained("identrics/EN_propaganda_detector")
tokens = tokenizer("Our country is the most powerful country in the world!", return_tensors="pt")
output = model(**tokens)
print(output.logits)
```
## Training Details
Trained on a corpus of 200 human-generated comments, augmented with 200 more synthetic comments...
Achieved an f1 score of x%
<!-- This section provides information about throughput, start/end time, checkpoint size if relevant, etc. -->
- PEFT 0.11.1