|
Logging training |
|
Running DummyClassifier() |
|
accuracy: 0.333 recall_macro: 0.333 precision_macro: 0.111 f1_macro: 0.167 |
|
=== new best DummyClassifier() (using recall_macro): |
|
accuracy: 0.333 recall_macro: 0.333 precision_macro: 0.111 f1_macro: 0.167 |
|
|
|
Running GaussianNB() |
|
accuracy: 0.947 recall_macro: 0.947 precision_macro: 0.951 f1_macro: 0.946 |
|
=== new best GaussianNB() (using recall_macro): |
|
accuracy: 0.947 recall_macro: 0.947 precision_macro: 0.951 f1_macro: 0.946 |
|
|
|
Running MultinomialNB() |
|
accuracy: 0.780 recall_macro: 0.780 precision_macro: 0.783 f1_macro: 0.780 |
|
Running DecisionTreeClassifier(class_weight='balanced', max_depth=1) |
|
accuracy: 0.667 recall_macro: 0.667 precision_macro: 0.500 f1_macro: 0.556 |
|
Running DecisionTreeClassifier(class_weight='balanced', max_depth=5) |
|
accuracy: 0.940 recall_macro: 0.940 precision_macro: 0.947 f1_macro: 0.939 |
|
Running DecisionTreeClassifier(class_weight='balanced', min_impurity_decrease=0.01) |
|
accuracy: 0.947 recall_macro: 0.947 precision_macro: 0.953 f1_macro: 0.946 |
|
Running LogisticRegression(C=0.1, class_weight='balanced', max_iter=1000) |
|
accuracy: 0.927 recall_macro: 0.927 precision_macro: 0.930 f1_macro: 0.926 |
|
Running LogisticRegression(class_weight='balanced', max_iter=1000) |
|
accuracy: 0.953 recall_macro: 0.953 precision_macro: 0.956 f1_macro: 0.953 |
|
=== new best LogisticRegression(class_weight='balanced', max_iter=1000) (using recall_macro): |
|
accuracy: 0.953 recall_macro: 0.953 precision_macro: 0.956 f1_macro: 0.953 |
|
|
|
|
|
Best model: |
|
LogisticRegression(class_weight='balanced', max_iter=1000) |
|
Best Scores: |
|
accuracy: 0.953 recall_macro: 0.953 precision_macro: 0.956 f1_macro: 0.953 |
|
|