|
--- |
|
license: afl-3.0 |
|
language: |
|
- zh |
|
tags: |
|
- Chinese Spell Correction |
|
- csc |
|
- Chinese Spell Checking |
|
--- |
|
|
|
# ReaLiSe-for-csc |
|
|
|
中文拼写纠错(Chinese Spell Checking, CSC)模型 |
|
|
|
该模型源于ReaLiSe源码提供的模型 |
|
|
|
原论文为:https://arxiv.org/abs/2105.12306 |
|
|
|
原论文官方代码为:https://github.com/DaDaMrX/ReaLiSe |
|
|
|
本模型在SIGHAN2015上的表现如下: |
|
|
|
| | Detect-Acc | Detect-Precision | Detect-Recall | Detect-F1 | Correct-Acc | Correct-Precision | Correct-Recall | Correct-F1 | |
|
|--|--|--|--|--|--|--|--|--| |
|
| Sentence-level | 84.7 | 77.3 | 81.3 | 79.3 | 84.0 | 75.9 | 79.9 | 77.8 | |
|
|
|
|
|
|
|
# 模型使用方法 |
|
|
|
[![Open In Colab](https://colab.research.google.com/assets/colab-badge.svg)](https://colab.research.google.com/github/iioSnail/SCOPE/blob/main/ChineseBERT-for-csc_Demo.ipynb) |
|
|
|
|
|
安装依赖: |
|
|
|
``` |
|
!pip install transformers |
|
!pip install pypinyin |
|
!pip install boto3 |
|
``` |
|
|
|
``` |
|
from transformers import AutoTokenizer, AutoModel |
|
|
|
tokenizer = AutoTokenizer.from_pretrained("iioSnail/ReaLiSe-for-csc", trust_remote_code=True) |
|
model = AutoModel.from_pretrained("iioSnail/ReaLiSe-for-csc", trust_remote_code=True) |
|
|
|
inputs = tokenizer(["我是炼习时长两念半的个人练习生蔡徐坤"], return_tensors='pt') |
|
output_hidden = model(**inputs).logits |
|
print(''.join(tokenizer.convert_ids_to_tokens(output_hidden.argmax(-1)[0, 1:-1]))) |
|
``` |
|
|
|
输出: |
|
|
|
``` |
|
我是练习时长两年半的个人练习生蔡徐坤 |
|
``` |
|
|
|
你也可以使用本模型封装的`predict`方法。 |
|
|
|
``` |
|
from transformers import AutoTokenizer, AutoModel |
|
|
|
tokenizer = AutoTokenizer.from_pretrained("iioSnail/ReaLiSe-for-csc", trust_remote_code=True) |
|
model = AutoModel.from_pretrained("iioSnail/ReaLiSe-for-csc", trust_remote_code=True) |
|
|
|
model.set_tokenizer(tokenizer) # 使用predict方法前,调用该方法 |
|
print(model.predict("我是练习时长两念半的鸽仁练习生蔡徐坤")) |
|
print(model.predict(["我是练习时长两念半的鸽仁练习生蔡徐坤", "喜换唱跳、rap 和 蓝球"])) |
|
``` |
|
|
|
输出: |
|
|
|
``` |
|
我是练习时长两年半的各仁练习生蔡徐坤 |
|
['我是练习时长两年半的各仁练习生蔡徐坤', '喜欢唱跳、rap 和 蓝球'] |
|
``` |
|
|
|
# 模型训练 |
|
|
|
``` |
|
from transformers import AutoTokenizer, AutoModel |
|
|
|
tokenizer = AutoTokenizer.from_pretrained("iioSnail/ReaLiSe-for-csc", trust_remote_code=True) |
|
model = AutoModel.from_pretrained("iioSnail/ReaLiSe-for-csc", trust_remote_code=True) |
|
|
|
inputs = tokenizer(["我是炼习时长两念半的个人练习生蔡徐坤", "喜换唱跳rap蓝球"], |
|
text_target=["我是练习时长两年半的个人练习生蔡徐坤", "喜欢唱跳rap篮球"], |
|
padding=True, |
|
return_tensors='pt') |
|
loss = model(**inputs).loss |
|
print("loss:", loss) |
|
loss.backward() |
|
``` |
|
|
|
输出: |
|
|
|
``` |
|
loss: tensor(0.6515, grad_fn=<NllLossBackward0>) |
|
``` |
|
|
|
|
|
# 常见问题 |
|
|
|
1. 网络问题,例如:`Connection Error` |
|
|
|
解决方案:将模型下载到本地使用。批量下载方案可参考该[博客](https://blog.csdn.net/zhaohongfei_358/article/details/126222999) |
|
|
|
2. 将模型下载到本地使用时出现报错:`ModuleNotFoundError: No module named 'transformers_modules.iioSnail/ReaLiSe-for-csc'` |
|
|
|
解决方案:将 `iioSnail/ChineseBERT-for-csc` 改为 `iioSnail\ChineseBERT-for-csc`,或升级transformers |