ReaLiSe-for-csc / README.md
iioSnail's picture
Update README.md
c4d588e
metadata
license: afl-3.0
language:
  - zh
tags:
  - Chinese Spell Correction
  - csc
  - Chinese Spell Checking

ReaLiSe-for-csc

中文拼写纠错(Chinese Spell Checking, CSC)模型

该模型源于ReaLiSe源码提供的模型

原论文为:https://arxiv.org/abs/2105.12306

原论文官方代码为:https://github.com/DaDaMrX/ReaLiSe

本模型在SIGHAN2015上的表现如下:

Detect-Acc Detect-Precision Detect-Recall Detect-F1 Correct-Acc Correct-Precision Correct-Recall Correct-F1
Sentence-level 84.7 77.3 81.3 79.3 84.0 75.9 79.9 77.8

模型使用方法

Open In Colab

安装依赖:

!pip install transformers
!pip install pypinyin
!pip install boto3
from transformers import AutoTokenizer, AutoModel

tokenizer = AutoTokenizer.from_pretrained("iioSnail/ReaLiSe-for-csc", trust_remote_code=True)
model = AutoModel.from_pretrained("iioSnail/ReaLiSe-for-csc", trust_remote_code=True)

inputs = tokenizer(["我是炼习时长两念半的个人练习生蔡徐坤"], return_tensors='pt')
output_hidden = model(**inputs).logits
print(''.join(tokenizer.convert_ids_to_tokens(output_hidden.argmax(-1)[0, 1:-1])))

输出:

我是练习时长两年半的个人练习生蔡徐坤

你也可以使用本模型封装的predict方法。

from transformers import AutoTokenizer, AutoModel

tokenizer = AutoTokenizer.from_pretrained("iioSnail/ReaLiSe-for-csc", trust_remote_code=True)
model = AutoModel.from_pretrained("iioSnail/ReaLiSe-for-csc", trust_remote_code=True)

model.set_tokenizer(tokenizer)  # 使用predict方法前,调用该方法
print(model.predict("我是练习时长两念半的鸽仁练习生蔡徐坤"))
print(model.predict(["我是练习时长两念半的鸽仁练习生蔡徐坤", "喜换唱跳、rap 和 蓝球"]))

输出:

我是练习时长两年半的各仁练习生蔡徐坤
['我是练习时长两年半的各仁练习生蔡徐坤', '喜欢唱跳、rap 和 蓝球']

模型训练

from transformers import AutoTokenizer, AutoModel

tokenizer = AutoTokenizer.from_pretrained("iioSnail/ReaLiSe-for-csc", trust_remote_code=True)
model = AutoModel.from_pretrained("iioSnail/ReaLiSe-for-csc", trust_remote_code=True)

inputs = tokenizer(["我是炼习时长两念半的个人练习生蔡徐坤", "喜换唱跳rap蓝球"],
                   text_target=["我是练习时长两年半的个人练习生蔡徐坤", "喜欢唱跳rap篮球"],
                   padding=True,
                   return_tensors='pt')
loss = model(**inputs).loss
print("loss:", loss)
loss.backward()

输出:

loss: tensor(0.6515, grad_fn=<NllLossBackward0>)

常见问题

  1. 网络问题,例如:Connection Error

解决方案:将模型下载到本地使用。批量下载方案可参考该博客

  1. 将模型下载到本地使用时出现报错:ModuleNotFoundError: No module named 'transformers_modules.iioSnail/ReaLiSe-for-csc'

解决方案:将 iioSnail/ChineseBERT-for-csc 改为 iioSnail\ChineseBERT-for-csc,或升级transformers