metadata
base_model:
- llm-jp/llm-jp-3-13b
tags:
- text-generation-inference
- transformers
- unsloth
- llama
- trl
license: apache-2.0
language:
- en
- ja
Uploaded model
- Developed by: ikedachin
- License: apache-2.0
- Finetuned from model : llm-jp/llm-jp-3-13b
This llama model was trained 2x faster with Unsloth and Huggingface's TRL library.
学習データ
使用したSupervised fien-tune用dataset:下記からランダムに20000データを抽出
DeL-TaiseiOzaki/Tengentoppa-sft-v1.0
🌾 ランダムに20000データを取り出して学習
ベースモデル
SFTに用いた継続事前学習モデル(ベースとしたモデル) ikedachin/llm-jp-3-13b-october-news-e1-all-3-5 このベースモデルのLoRAパラメータの一部を追加学習
追加学習前のベースモデル
llm-jp/llm-jp-3-13b
環境構築
pip uninstall unsloth -y
pip install --upgrade --no-cache-dir "unsloth[colab-new] @ git+https://github.com/unslothai/unsloth.git"
pip install --upgrade torch
pip install --upgrade xformers
実行コード
# import libraries
import re
import json
import torch
from peft import PeftModel
from tqdm import tqdm
from unsloth import FastLanguageModel
# define base model_id and peft model_id
model_id = "llm-jp/llm-jp-3-13b"
adapter_id = "ikedachin/llm-jp-3-13b-october-news-e1-all-3-5-sft-Ozaki-Magpie-20000-sorted-params"
dtype = None
load_in_4bit = True
max_seq_length = 1024
# down load base model
model, tokenizer = FastLanguageModel.from_pretrained(
model_name=model_id,
dtype=dtype,
load_in_4bit=load_in_4bit,
trust_remote_code=True,
)
# adapt peft model
model = PeftModel.from_pretrained(model, adapter_id, token = HF_TOKEN)
# prepare dataset elyza-tasks-100-TV_0.jsonl
datasets_elyza = []
with open('./elyza-tasks-100-TV_0.jsonl', 'r') as f:
item = ""
for line in f:
line = line.strip()
item += line
if item.endswith("}"):
datasets_elyza.append(json.loads(item))
item = ""
# change mode for inference
FastLanguageModel.for_inference(model)
# inferrence
results = []
for dt in tqdm(datasets):
input = dt["input"]
prompt = f"""### 指示\n{input}\n### 回答\n"""
inputs = tokenizer([prompt], return_tensors = "pt").to(model.device)
outputs = model.generate(**inputs, max_new_tokens = max_seq_length, use_cache = True, do_sample=False, repetition_penalty=1.2)
prediction = tokenizer.decode(outputs[0], skip_special_tokens=True).split('\n### 回答')[-1]
results.append({"task_id": dt["task_id"], "input": input, "output": prediction})
# create result file as jsonl type
json_file_id = re.sub(".*/", adapter_id)
with open(f"/content/{json_file_id}_output.jsonl", 'w', encoding='utf-8') as f:
for result in results:
json.dump(result, f, ensure_ascii=False)
f.write('\n')