iliemihai's picture
Update README.md
baaf7df
|
raw
history blame
1.79 kB
---
language: ro
inference: true
license: apache-2.0
tags:
- romanian
- seq2seq
- t5
---
This is the fine-tuned [mt5-base-romanian](https://huggingface.co/dumitrescustefan/mt5-base-romanian) base model (**390M** parameters).
The model was fine-tuned on the [romanian diacritics dataset](https://huggingface.co/datasets/dumitrescustefan/diacritic) for 150k steps with a batch of size 8. The encoder sequence length is 256 and the decoder sequence length is also 256. It was trained with the following [scripts](https://github.com/iliemihai/t5x_diacritics).
### How to load the fine-tuned mt5x model
```python
from transformers import MT5ForConditionalGeneration, T5Tokenizer
model = MT5ForConditionalGeneration.from_pretrained('iliemihai/mt5-base-romanian-diacritics')
tokenizer = T5Tokenizer.from_pretrained('iliemihai/mt5-base-romanian-diacritics')
input_text = "A inceput sa ii taie un fir de par, iar fata sta in fata, tine camasa de in in mana si canta nota SI."
inputs = tokenizer(input_text, max_length=256, truncation=True, return_tensors="pt")
outputs = model.generate(input_ids=inputs["input_ids"], attention_mask=inputs["attention_mask"])
output = tokenizer.decode(outputs[0], skip_special_tokens=True)
print(output) # this will print "A început să îi taie un fir de păr, iar fata stă în față, ține cămașa de in în mână și cântă nota SI"
```
### Evaluation
Evaluation will be done soon [here]()
### Acknowledgements
We'd like to thank [TPU Research Cloud](https://sites.research.google/trc/about/) for providing the TPUv3 cores we used to train these models!
### Authors
Yours truly,
_[Stefan Dumitrescu](https://github.com/dumitrescustefan), [Mihai Ilie](https://github.com/iliemihai) and [Per Egil Kummervold](https://huggingface.co/north)_