imTak's picture
Upload tokenizer
8f17c42 verified
metadata
library_name: transformers
language:
  - ko
license: mit
base_model: openai/whisper-large-v3-turbo
tags:
  - generated_from_trainer
datasets:
  - mozilla-foundation/common_voice_17_0
metrics:
  - wer
model-index:
  - name: Whisper turbo KO - GTH
    results:
      - task:
          type: automatic-speech-recognition
          name: Automatic Speech Recognition
        dataset:
          name: Common Voice 17.0
          type: mozilla-foundation/common_voice_17_0
          config: ko
          split: None
          args: 'config: ko, split: test'
        metrics:
          - type: wer
            value: 27.00534759358289
            name: Wer

Whisper turbo KO - GTH

This model is a fine-tuned version of openai/whisper-large-v3-turbo on the Common Voice 17.0 dataset. It achieves the following results on the evaluation set:

  • Loss: 0.5105
  • Wer: 27.0053

Model description

More information needed

Intended uses & limitations

More information needed

Training and evaluation data

More information needed

Training procedure

Training hyperparameters

The following hyperparameters were used during training:

  • learning_rate: 1e-05
  • train_batch_size: 16
  • eval_batch_size: 8
  • seed: 42
  • optimizer: Use adamw_torch with betas=(0.9,0.999) and epsilon=1e-08 and optimizer_args=No additional optimizer arguments
  • lr_scheduler_type: linear
  • lr_scheduler_warmup_steps: 500
  • training_steps: 4000
  • mixed_precision_training: Native AMP

Training results

Training Loss Epoch Step Validation Loss Wer
0.0087 22.2222 1000 0.4786 30.3667
0.0014 44.4444 2000 0.4935 30.7105
0.0001 66.6667 3000 0.5067 27.0817
0.0001 88.8889 4000 0.5105 27.0053

Framework versions

  • Transformers 4.46.3
  • Pytorch 2.5.1+cu124
  • Datasets 3.1.0
  • Tokenizers 0.20.3