Edit model card

segformer-b0-finetuned-agriculture

This model is a fine-tuned version of nvidia/mit-b0 on the None dataset. It achieves the following results on the evaluation set:

  • Loss: 0.3305
  • Mean Iou: 0.4242
  • Mean Accuracy: 0.5107
  • Overall Accuracy: 0.6733
  • Accuracy Unlabeled: nan
  • Accuracy Nutrient Deficiency: 0.6872
  • Accuracy Planter Skip: 0.1915
  • Accuracy Water: 0.8549
  • Accuracy Waterway: 0.1797
  • Accuracy Weed Cluster: 0.6404
  • Iou Unlabeled: 0.0
  • Iou Nutrient Deficiency: 0.6865
  • Iou Planter Skip: 0.1914
  • Iou Water: 0.8475
  • Iou Waterway: 0.1795
  • Iou Weed Cluster: 0.6401

Model description

More information needed

Intended uses & limitations

More information needed

Training and evaluation data

More information needed

Training procedure

Training hyperparameters

The following hyperparameters were used during training:

  • learning_rate: 1e-05
  • train_batch_size: 2
  • eval_batch_size: 2
  • seed: 42
  • optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08
  • lr_scheduler_type: linear
  • num_epochs: 5

Training results

Training Loss Epoch Step Validation Loss Mean Iou Mean Accuracy Overall Accuracy Accuracy Unlabeled Accuracy Nutrient Deficiency Accuracy Planter Skip Accuracy Water Accuracy Waterway Accuracy Weed Cluster Iou Unlabeled Iou Nutrient Deficiency Iou Planter Skip Iou Water Iou Waterway Iou Weed Cluster
0.2889 1.0 8145 0.4127 0.2578 0.3110 0.4484 nan 0.3062 0.0 0.7988 0.0007 0.4496 0.0 0.3062 0.0 0.7913 0.0007 0.4485
0.3157 2.0 16290 0.3877 0.3374 0.4070 0.5970 nan 0.5241 0.0023 0.8816 0.0303 0.5969 0.0 0.5237 0.0023 0.8715 0.0301 0.5968
0.2637 3.0 24435 0.3531 0.3717 0.4480 0.6171 nan 0.5638 0.0409 0.8804 0.1563 0.5984 0.0 0.5633 0.0409 0.8723 0.1554 0.5982
0.4715 4.0 32580 0.3337 0.3653 0.4398 0.6073 nan 0.6172 0.1068 0.8077 0.0976 0.5698 0.0 0.6164 0.1068 0.8015 0.0976 0.5696
0.0668 5.0 40725 0.3305 0.4242 0.5107 0.6733 nan 0.6872 0.1915 0.8549 0.1797 0.6404 0.0 0.6865 0.1914 0.8475 0.1795 0.6401

Framework versions

  • Transformers 4.39.1
  • Pytorch 2.2.1+cu121
  • Datasets 2.18.0
  • Tokenizers 0.15.2
Downloads last month
14
Safetensors
Model size
3.72M params
Tensor type
F32
·
Inference Examples
This model does not have enough activity to be deployed to Inference API (serverless) yet. Increase its social visibility and check back later, or deploy to Inference Endpoints (dedicated) instead.

Model tree for imessam/segformer-b0-finetuned-agriculture

Base model

nvidia/mit-b0
Finetuned
(319)
this model