|
--- |
|
license: mit |
|
--- |
|
|
|
--- |
|
tags: |
|
- tabular-classification |
|
- sklearn |
|
datasets: |
|
- wine-quality |
|
- imodels/compas-recidivism |
|
--- |
|
|
|
|
|
### Load the data |
|
|
|
```python |
|
from datasets import load_dataset |
|
import imodels |
|
import numpy as np |
|
from sklearn.model_selection import GridSearchCV |
|
import joblib |
|
|
|
dataset = load_dataset("imodels/compas-recidivism") |
|
df = pd.DataFrame(dataset['train']) |
|
X_train = df.drop(columns=['is_recid']) |
|
y_train = df['is_recid'].values |
|
|
|
df_test = pd.DataFrame(dataset['test']) |
|
X_test = df.drop(columns=['is_recid']) |
|
y_test = df['is_recid'].values |
|
``` |
|
|
|
### Load the model |
|
## Wine Quality classification |
|
|
|
### A Simple Example of Scikit-learn Pipeline |
|
|
|
> Inspired by https://towardsdatascience.com/a-simple-example-of-pipeline-in-machine-learning-with-scikit-learn-e726ffbb6976 by Saptashwa Bhattacharyya |
|
|
|
|
|
### Load the model |
|
|
|
```python |
|
from huggingface_hub import hf_hub_url, cached_download |
|
import joblib |
|
import pandas as pd |
|
|
|
REPO_ID = "imodels/figs-compas-recidivism" |
|
FILENAME = "figs_model.joblib" |
|
|
|
model = joblib.load(cached_download( |
|
hf_hub_url(REPO_ID, FILENAME) |
|
)) |
|
|
|
# model is a `imodels.FIGSClassifier` |
|
``` |
|
|
|
### Make prediction |
|
|
|
``` |
|
preds = model.predict(X_test) |
|
print('accuracy', np.mean(preds==y_test)) |
|
``` |
|
|