The original Llama 3 8b (base) special token weights are zero, which might cause NaN gradients. This version re-initialized the weights of all the following special tokens to alleviate the problem.
<|eot_id|>
<|start_header_id|>
<|end_header_id|>
We set the weights of these tokens in embed
and lm_head
to be the mean of all other tokens.
Code for making this model:
import argparse
import transformers
import torch
def init_eot_embedding_llama3(model_path, output_dir, special_tokens=["<|eot_id|>", "<|start_header_id|>", "<|end_header_id|>"], mean_cutoff=128000, dtype=torch.bfloat16):
tokenizer = transformers.AutoTokenizer.from_pretrained(model_path)
model = transformers.AutoModelForCausalLM.from_pretrained(model_path, low_cpu_mem_usage=True, torch_dtype=dtype)
assert model.model.embed_tokens.weight.shape[0] >= mean_cutoff
assert model.lm_head.weight.shape[0] >= mean_cutoff
with torch.no_grad():
for token in special_tokens:
token_id = tokenizer.convert_tokens_to_ids(token)
print (f"Token {token} ID {token_id}")
model.model.embed_tokens.weight[token_id] = torch.mean(model.model.embed_tokens.weight[:mean_cutoff].to(torch.float32), dim=0).to(dtype)
model.lm_head.weight[token_id] = torch.mean(model.lm_head.weight[:mean_cutoff].to(torch.float32), dim=0).to(dtype)
# Save
tokenizer.save_pretrained(output_dir)
model.save_pretrained(output_dir)
def main():
parser = argparse.ArgumentParser()
parser.add_argument(
"--model-path",
help="Location of model, or HuggingFace repo ID",
)
parser.add_argument(
"--output-dir",
help="Location to write resulting model and tokenizer",
)
init_eot_embedding_llama3(**vars(parser.parse_args()))
if __name__ == "__main__":
main()
- Downloads last month
- 649
This model does not have enough activity to be deployed to Inference API (serverless) yet. Increase its social
visibility and check back later, or deploy to Inference Endpoints (dedicated)
instead.