|
--- |
|
language: |
|
- he |
|
license: apache-2.0 |
|
tags: |
|
- generated_from_trainer |
|
- he |
|
- robust-speech-event |
|
datasets: |
|
- imvladikon/hebrew_speech_kan |
|
- imvladikon/hebrew_speech_coursera |
|
metrics: |
|
- wer |
|
base_model: facebook/wav2vec2-xls-r-300m |
|
model-index: |
|
- name: wav2vec2-xls-r-300m-lm-hebrew |
|
results: [] |
|
--- |
|
|
|
# wav2vec2-xls-r-300m-lm-hebrew |
|
|
|
This model is a fine-tuned version of [facebook/wav2vec2-xls-r-300m](https://huggingface.co/facebook/wav2vec2-xls-r-300m) on the None dataset |
|
with adding ngram models according to [Boosting Wav2Vec2 with n-grams in 🤗 Transformers](https://huggingface.co/blog/wav2vec2-with-ngram) |
|
|
|
|
|
## Usage |
|
|
|
check package: https://github.com/imvladikon/wav2vec2-hebrew |
|
|
|
or use transformers pipeline: |
|
|
|
```python |
|
import torch |
|
from datasets import load_dataset |
|
from transformers import AutoModelForCTC, AutoProcessor |
|
import torchaudio.functional as F |
|
|
|
|
|
model_id = "imvladikon/wav2vec2-xls-r-300m-lm-hebrew" |
|
|
|
sample_iter = iter(load_dataset("google/fleurs", "he_il", split="test", streaming=True)) |
|
|
|
sample = next(sample_iter) |
|
resampled_audio = F.resample(torch.tensor(sample["audio"]["array"]), sample["audio"]["sampling_rate"], 16_000).numpy() |
|
|
|
model = AutoModelForCTC.from_pretrained(model_id) |
|
processor = AutoProcessor.from_pretrained(model_id) |
|
|
|
input_values = processor(resampled_audio, return_tensors="pt").input_values |
|
|
|
with torch.no_grad(): |
|
logits = model(input_values).logits |
|
|
|
transcription = processor.batch_decode(logits.numpy()).text |
|
print(transcription) |
|
``` |
|
|
|
## Intended uses & limitations |
|
|
|
More information needed |
|
|
|
## Training and evaluation data |
|
|
|
More information needed |
|
|
|
## Training procedure |
|
|
|
### Training hyperparameters |
|
|
|
The following hyperparameters were used during training: |
|
- learning_rate: 0.0003 |
|
- train_batch_size: 64 |
|
- eval_batch_size: 16 |
|
- seed: 42 |
|
- gradient_accumulation_steps: 2 |
|
- total_train_batch_size: 128 |
|
- optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08 |
|
- lr_scheduler_type: linear |
|
- lr_scheduler_warmup_steps: 500 |
|
- num_epochs: 100 |
|
- mixed_precision_training: Native AMP |
|
|
|
### Training results |
|
|
|
|
|
### Framework versions |
|
|
|
- Transformers 4.16.0.dev0 |
|
- Pytorch 1.10.1+cu102 |
|
- Datasets 1.17.1.dev0 |
|
- Tokenizers 0.11.0 |