Edit model card
YAML Metadata Warning: empty or missing yaml metadata in repo card (https://huggingface.co/docs/hub/model-cards#model-card-metadata)

This is a fine-tuned model, trained on 400+ test scripts, written in Java using Cucumber and Selenium frameworks.

Base model used is Salesforce/Codegen25-7b-multi. The dataset used can be found at shyam-incedoinc/qa-finetune-dataset.

Training metrics can be seen in the metrics section.

Training Parameters

    num_train_epochs=25,
    per_device_train_batch_size=2,
    gradient_accumulation_steps=1,
    gradient_checkpointing=True,
    optim="paged_adamw_32bit",
    #save_steps=save_steps,
    logging_steps=25,
    save_strategy="epoch",
    learning_rate=2e-4,
    weight_decay=0.001,
    fp16=True,
    bf16=False,
    max_grad_norm=0.3,
    warmup_ratio=0.03,
    #max_steps=max_steps,
    group_by_length=False,
    lr_scheduler_type="cosine",
    disable_tqdm=False,
    report_to="tensorboard",
    seed=42
)

LoraConfig(
        lora_alpha=16,
        lora_dropout=0.1,
        r=64,
        bias="none",
        task_type="CAUSAL_LM",
)

Run the below code block for getting inferences from this model.

import torch
from transformers import AutoModelForCausalLM, AutoTokenizer

hf_model_repo = "shyam-incedoinc/codegen25-7b-multi-peft-qlora-finetuned-qa"

# Get the tokenizer
tokenizer = AutoTokenizer.from_pretrained(hf_model_repo)

# Load the model
model = AutoModelForCausalLM.from_pretrained(hf_model_repo, load_in_4bit=True,
                                             torch_dtype=torch.float16,
                                             device_map="auto")

# Load dataset from the hub
hf_data_repo = "shyam-incedoinc/qa-finetune-dataset"
train_dataset = load_dataset(hf_data_repo, split="train")
valid_dataset = load_dataset(hf_data_repo, split="validation")

# Load the sample
sample = valid_dataset[randrange(len(valid_dataset))]['text']
groundtruth = sample.split("### Output:\n")[1]
prompt = sample.split("### Output:\n")[0]+"### Output:\n"

# Generate response
input_ids = tokenizer(prompt, return_tensors="pt", truncation=True).input_ids.cuda()
outputs = model.generate(input_ids=input_ids, max_new_tokens=1024,
                                do_sample=True, top_p=0.9, temperature=0.6)

# Print the result
print(f"Generated response:\n{tokenizer.batch_decode(outputs.detach().cpu().numpy(), skip_special_tokens=True)[0]}")
print(f"Ground Truth:\n{groundtruth}")
Downloads last month
9
Inference Examples
This model does not have enough activity to be deployed to Inference API (serverless) yet. Increase its social visibility and check back later, or deploy to Inference Endpoints (dedicated) instead.