|
--- |
|
license: apache-2.0 |
|
language: as |
|
tags: |
|
- audio |
|
- automatic-speech-recognition |
|
- speech |
|
- xlsr-fine-tuning |
|
- as |
|
- robust-speech-event |
|
- hf-asr-leaderboard |
|
datasets: |
|
- mozilla-foundation/common_voice_7_0 |
|
model-index: |
|
- name: XLS-R-300M - Assamese |
|
results: |
|
- task: |
|
name: Automatic Speech Recognition |
|
type: automatic-speech-recognition |
|
dataset: |
|
name: Common Voice 7 |
|
type: mozilla-foundation/common_voice_7_0 |
|
args: as |
|
metrics: |
|
- name: Test WER |
|
type: wer |
|
value: 72.64 |
|
- name: Test CER |
|
type: cer |
|
value: 27.35 |
|
--- |
|
|
|
# wav2vec2-large-xls-r-300m-assamese |
|
|
|
This model is a fine-tuned version of [facebook/wav2vec2-xls-r-300m](https://huggingface.co/facebook/wav2vec2-xls-r-300m) on the common_voice_7_0 dataset. |
|
It achieves the following results on the evaluation set: |
|
|
|
- WER: 0.7954545454545454 |
|
- CER: 0.32341269841269843 |
|
|
|
## Model description |
|
|
|
More information needed |
|
|
|
## Intended uses & limitations |
|
|
|
More information needed |
|
|
|
## Training and evaluation data |
|
|
|
To compute the evaluation parameters |
|
|
|
```bash |
|
cd wav2vec2-large-xls-r-300m-assamese; python eval.py --model_id ./ --dataset mozilla-foundation/common_voice_7_0 --config as --split test --log_outputs |
|
``` |
|
|
|
## Training procedure |
|
|
|
### Training hyperparameters |
|
|
|
The following hyperparameters were used during training: |
|
|
|
- learning_rate: 3e-4 |
|
- train_batch_size: 16 |
|
- eval_batch_size: 8 |
|
- seed: not given |
|
- gradient_accumulation_steps: 2 |
|
- total_train_batch_size: 32 |
|
- optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08 |
|
- lr_scheduler_type: linear |
|
- lr_scheduler_warmup_steps: 500 |
|
- num_epochs: 400 |
|
- mixed_precision_training: Native AMP |
|
|
|
### Training results |
|
|
|
| Training Loss | Epoch | Step | Validation Loss | Wer | |
|
|:-------------:|:------:|:----:|:---------------:|:------: | |
|
| 1.584065 | NA | 400 | 1.584065 | 0.915512 | |
|
| 1.658865 | Na | 800 | 1.658865 | 0.805096 | |
|
| 1.882352 | NA | 1200 | 1.882352 | 0.820742 | |
|
| 1.881240 | NA | 1600 | 1.881240 | 0.810907 | |
|
| 2.159748 | NA | 2000 | 2.159748 | 0.804202 | |
|
| 1.992871 | NA | 2400 | 1.992871 | 0.803308 | |
|
| 2.201436 | NA | 2800 | 2.201436 | 0.802861 | |
|
| 2.165218 | NA | 3200 | 2.165218 | 0.793920 | |
|
| 2.253643 | NA | 3600 | 2.253643 | 0.796603 | |
|
| 2.265880 | NA | 4000 | 2.265880 | 0.790344 | |
|
| 2.293935 | NA | 4400 | 2.293935 | 0.797050 | |
|
| 2.288851 | NA | 4800 | 2.288851 | 0.784086 | |
|
|
|
|
|
### Framework versions |
|
|
|
- Transformers 4.11.3 |
|
- Pytorch 1.10.0+cu113 |
|
- Datasets 1.13.3 |
|
- Tokenizers 0.10.3 |
|
|